Cho a,b,c thỏa mãn \(\hept{\begin{cases}a,b,c\in\left[0;2\right]\\a+b+c=3\end{cases}}\)
Chứng minh rằng a2+b2+c2<=5
Cho các số thực a,b,c thỏa mãn \(\hept{\begin{cases}a,b,c\in\left[0;2\right]\\a+b+c=3\end{cases}}\) thỏa mãn \(a^2+b^2+c^2\le5\)
Cho a, b, c là cá sô thực thỏa mãn \(\hept{\begin{cases}\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc\\\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=a^3b^3c^3\end{cases}}\)
Chứng minh rằng abc=0
Cho a , b ,c ,x ,y thỏa mãn \(\hept{\begin{cases}a+b+c=0\\\frac{x}{a}+\frac{y}{b}=\frac{x+y}{c}\end{cases}}\)
Chứng minh \(xa^2+yb^2=\left(x+y\right)c^2\)
Ta có:
\(\frac{x}{a}+\frac{y}{b}=\frac{x+y}{c}\)
\(\Leftrightarrow\frac{x}{a}+\frac{y}{b}=\frac{x+y}{-a-b}\)
\(\Leftrightarrow x\left(b^2+2ab\right)+y\left(a^2+2ab\right)=0\left(1\right)\)\
Ta cần chứng minh:
\(xa^2+yb^2=\left(x+y\right)c^2\)
\(\Leftrightarrow xa^2+yb^2=\left(x+y\right)\left(a+b\right)^2\)
\(\Leftrightarrow x\left(b^2+2ab\right)+y\left(a^2+2ab\right)=0\left(2\right)\)
Từ (1) và (2) ta có ĐPCM
tìm số nguyên dương a,b,c( b>c)thỏa mãn\(\hept{\begin{cases}b^2+c^2=a^2\\2\left(a+b+c\right)=bc\end{cases}}\)
cho \(\hept{\begin{cases}b+c\ne0\\c+a\ne0\\b-a\ne0\end{cases}}\)và c < 0, b > 0 thỏa mãn \(\frac{a}{b+c}-\frac{b}{c+a}+\frac{c}{b-a}=0\)CMR a < 0
Cho a,b,c là các số thực khác 0 thỏa mãn điều kiện:
\(\hept{\begin{cases}\text{a^2( b + c ) + b^2( c + a ) + c^2( a + b ) + 2abc = 0}\\a^{2015}+b^{2015}+c^{2015}=1\end{cases}}\)
Cho ba số a, b, c thỏa mãn \(\hept{\begin{cases}a+b+c=0\\\\a^2+b^2+c^2=2009\end{cases}}\) tính \(A=a^4+b^4+c^4\)
\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Rightarrow ab+bc+ac=-\frac{2009}{2}\)
\(\left(ab+bc+ac\right)^2=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+c+b\right)=a^2b^2+a^2c^2+b^2c^2\)\(\Rightarrow a^2b^2+a^2c^2+b^2c^2=\frac{2009^2}{4}\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
\(\Rightarrow2009^2=a^4+b^4+c^4+\frac{2009^2}{4}\cdot2\)
\(\Rightarrow a^4+b^4+c^4=\frac{2009^2}{2}\)
Ta có \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)
\(a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)=\left(\frac{a^2+b^2+c^2}{2}\right)^2=\frac{2009^2}{4}\)
\(A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=\frac{2009^2}{2}\)
Cho \(a,b,c\) là các số thực thỏa mãn \(\hept{\begin{cases}\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc\\\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=a^3b^3c^3\end{cases}}\)
Chứng minh rằng \(abc=0\)
Cho a,b,c thỏa mãn
\(\orbr{\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2=2009\end{cases}}}\)
Tính a4 + b4 + c4
\(\text{Chắc bn ghi thiếu đề :}\)
\(\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2=1\end{cases}}\)
\(Tính\)\(a^4+b^4+c^4\)
\(Giải:\)\(\text{Đặt}\)\(M=a^4+b^4+c^4\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\)
\(1=M=\left(2a^2b^2+2b^2c^2+2c^2a^2\right)\)
\(M=1-\left(2a^2b^2+2b^2c^2+2c^2a^2\right)=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(0=1+2ab+2ac+2bc\)
\(2\left(ab+ac+bc\right)=-1\Rightarrow ab+ac+bc=-\frac{1}{2}\)
\(\left(ab+ac+bc\right)^2=a^2b^2+a^2c^2+b^2c^2+2\left(a^2bc+ab^2c+abc^2\right)\)
\(\frac{1}{4}=^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)\)
\(\Rightarrow^2b^2+a^2c^2+b^2c^2=\frac{1}{4}.0\left(vì\right)a+b+c=0\)
\(M=1-2.\frac{1}{4}=\frac{1}{2}\)
\(a+b+c=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0.\)
\(\Leftrightarrow ab+bc+ca=-\frac{2009}{2}.\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{2009^2}{4}.\)
\(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{2009^2}{4}.\)
\(a^2b^2+b^2c^2+c^2a^2=\frac{2009^2}{4}.\)
Ta có \(\left(a^2+b^2+c^2\right)^2=2009^2\)
\(a^4+b^4+c^4=2009^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=2009^2-2.\frac{2009^2}{4}=\frac{2009^2}{2}.\)