Viết phương trình của mặt phẳng \(\left(\alpha\right)\) đi qua điểm \(M\left(2;-1;2\right)\), song song với trục Oy và vuông góc với mặt phẳng \(\left(\alpha\right):2x-y+3z+4=0\)
Trong không gian Oxyz, cho điểm \(D\left(-3;1;2\right)\) và mặt phẳng \(\left(\alpha\right)\) đi qua ba điểm \(A\left(1;0;11\right),B\left(0;1;10\right),C\left(1;1;8\right)\)
a) Viết phương trình đường thẳng AC
b) Viết phương trình tổng quát của mặt phẳng \(\left(\alpha\right)\)
c) Viết phương trình mặt cầu (S) tâm D, bán kính r = 5. Chứng minh mặt phẳng \(\left(\alpha\right)\) cắt mặt cầu (S)
Cho tứ diện có các đỉnh là \(A\left(5;1;3\right);B\left(1;6;2\right);C\left(5;0;4\right);D\left(4;0;6\right)\)
a) Hãy viết phương trình mặt phẳng (ABC)
b) Hãy viết phương trình mặt phẳng \(\left(\alpha\right)\) đi qua điểm D và song song với mặt phẳng (ABC)
Trong không gian Oxyz cho 2 điểm A(3;1;1); B(2;-1;2) và mặt phẳng \(\left(\alpha\right):2x-y-2z+1=0\)
a) Viết phương trình mặt phẳng (P) qua 2 điểm A, B và vuông góc với mặt phẳng\(\left(\alpha\right)\)
b) Viết phương trình mặt cầu (S) tâm A và tiếp xúc với mặt phẳng \(\left(\alpha\right)\)
\(\overrightarrow{AB}=\left(-1;-2;1\right)\); \(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)
Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)
\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)
Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)
Trong không gian Oxyz, hãy viết phương trình mặt phẳng \(\left(\alpha\right)\) đi qua điểm \(M\left(2;-1;2\right)\) và song song với mặt phẳng \(\left(\beta\right):2x-y+3z+4=0\) ?
Vectơ →nn→(2 ; -1 ; 3) là vectơ pháp tuyến của mặt phẳng ( β) .
Vì (α) // ( β) nên →nn→ cũng là vectơ pháp tuyến của mặt phẳng (α) .
Phương trình mặt phẳng (α) có dạng:
2(x - 2) - (y + 1) + 3(z - 2) = 0
hay 2x - y + 3z -11 = 0.
Cho mặt phẳng \(\left(\alpha\right)\) có phương trình tổng quát :
\(2x+y-z-6=0\)
a) Viết phương trình mặt phẳng \(\left(\beta\right)\) đi qua O và song song với \(\left(\alpha\right)\)
b) Viết phương trình tham số của đường thẳng đi qua gốc tọa độ và vuông góc với mặt phẳng \(\left(\alpha\right)\)
c) Tính khoảng cách từ gốc tọa độ đến mặt phẳng \(\left(\alpha\right)\)
Cho điểm \(A\left(2;3;4\right)\). Hãy viết phương trình của mặt phẳng \(\left(\alpha\right)\) đi qua các hình chiếu của điểm A trên các trục tọa độ ?
Trong không gian Oxyz, cho 3 điểm \(A\left(1;0;0\right);B\left(1;1;1\right);C\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)\)
a) Viết phương trình tổng quát của mặt phẳng \(\left(\alpha\right)\) đi qua O và vuông góc với OC
b) Viết phương trình mặt phẳng \(\left(\beta\right)\) chứa AB và vuông góc với \(\left(\alpha\right)\)
Trong không gian Oxyz, cho tứ diện có các đỉnh là \(A\left(5;1;3\right);B\left(1;6;2\right);C\left(5;0;4\right);D\left(4;0;6\right)\) :
a) Hãy viết phương trình của các mặt phẳng (ACD) và (BCD) ?
b) Hãy viết phương trình mặt phẳng \(\left(\alpha\right)\) đi qua cạnh AB và song song với cạnh CD ?
Giải:
a) Mặt phẳng (ACD) đi qua A(5 ; 1 ; 3) và chứa giá của các vectơ (0 ; -1 ; 1)
và (-1 ; -1 ; 3).
Vectơ = (-2 ; -1 ; -1) vuông góc với mặt phẳng (ACD).
Phương trình (ACD) có dạng:
2(x - 5) + (y - 1) + (z - 3) = 0.
hay 2x + y + z - 14 = 0.
Tương tự: Mặt phẳng (BCD) qua điểm B(1 ; 6 ; 2) và nhận vectơ làm vectơ pháp tuyến.
Ta có :(4 ; -6 ; 2),
(3 ; -6 ; 4) và
= (-12 ; -10 ; -6)
Xét (6 ; 5 ; 3) thì
nên
cũng là vectơ pháp tuyến của mặt phẳng (BCD). Phương trình mặt phẳng (BCD) có dạng:
6(x - 1) + 5(y - 6) +3(z - 2) = 0
hay 6x + 5y + 3z - 42 = 0.
b) Mặt phẳng ( α ) qua cạnh AB và song song với CD thì ( α ) qua A và nhận
(-4 ; 5 ; 1) ,
(-1 ; 0 ; 2) làm vectơ chỉ phương.
Vectơ = (10 ; 9 ; 5) là vectơ pháp tuyến của ( α ).
Phương trình mặt phẳng ( α ) có dạng : 10x + 9y + 5z - 74 = 0.
Viết phương trình mặt phẳng \(\left(\alpha\right)\) trong các trường hợp sau :
a) \(\left(\alpha\right)\) đi qua điểm \(M\left(2;0;1\right)\) và nhận \(\overrightarrow{n}=\left(1;1;1\right)\) làm vectơ pháp tuyến
b) \(\left(\alpha\right)\) đi qua điểm \(A\left(1;0;0\right)\) và song song với giá của hai vectơ \(\overrightarrow{u}=\left(0;1;1\right);\overrightarrow{v}=\left(-1;0;2\right)\)
c) \(\left(\alpha\right)\) đi qua 3 điểm \(M\left(1;1;1\right);N\left(4;3;2\right);P\left(5;2;1\right)\)