Tìm giá trị biểu thức :
A = \(-3x^2y+x^3y-\frac{1}{2}xy^2+2\) với x = -1 ; y = \(\frac{1}{3}\)
Bài 1 :Tính giá trị biểu thức: A= 4x^4+7x^2y^2+3y^4+5y^2 với x^2+y^2=5
Bài 2 : Cho hai biểu thức sau
2P+Q=x^2y+6xy^2+3x^2y^2
P-Q=2x^2y-xy^2+3x^2y^2
Tìm đa thức P và Q
Bài 1:A=4x4+7x2y2+3y4+5y2=4x2(x2+y2)+3y2(x2+y2)+5y2=20x2+15y2+5y2=20(x2+y2)=100.
A=4x4+7x2y2+3y4+5y2
=4x2(x2+y2)+3y2(x2+y2)+5y2
=20x2+15y2+5y2
=20x2+(15+5)y2
=20(x2+y2)=100
Cho các biểu thức sau:
\(A=0,25x^2y^3-0,5x^2y^3+4x^2y^3\)
\(B=1,5(xy^2)^3x^2y-2(xy)^3x^2y4+[0,\left(3\right)x^2y]^2.xy^5\)
\(C=(0,5.xy).\left(-\frac{1}{3}xy^2\right)\)
\(D=\left(\frac{\sqrt{2}}{3}x^3y^5\right).0,6\left(xy^2\right)\)
a) Thu gọn các biểu thức trên
b) Chỉ ra các đơn thức đồng dạng
c) Tính giá trị các đơn thức sau khi thu gọn tại x=\(\frac{1}{3}\)và y = -1
Bài 1: Tính giá trị biểu thức
( x - 1 )( x - 2 )(1 + x + x^2 )( 4 + 2x + x^2) với x = 1
Bài 2: Hai số x và y thỏa mãn điều kiện sau
x - y = -3 ; xy = 10
Tính giá trị biểu thức
P = x^3 - 3x^2y + 3y^2 - y^3
mình hỏi vs 3y^2 là 3xy^2 phải không hay chỉ là 3y^2
Bài 2: \(\hept{\begin{cases}x-y=-3\\x=\frac{10}{y}\end{cases}\Rightarrow}\)\(\frac{10}{y}-y=-3\Leftrightarrow y^2-3y-10=0\Leftrightarrow\orbr{\begin{cases}y=5\Rightarrow x=2\\y=-2\Rightarrow x=-5\end{cases}}\)
*Với x=2;y=5 =>P=-102
*Với x=-5;y=-2 =>P=45
Bài 1.
\(\left(x-1\right)\left(x-2\right)\left(1+x+x^2\right)\left(4+2x+x^2\right)\)
Thay x=1 ta được:
\(0.\left(x-2\right)\left(1+x+x^2\right)\left(4+2x+x^2\right)=0\)
Vậy GTBT=0
bài 1 : thu gọn đa thức , tìm bậc , hệ số cao nhất
A = 15x^2y^3 + 7x^2 - 8x^3y^2 - 12x^2 + 11x^3y^2 - 12x^2y^3
B = 3x^5y + \(\frac{1}{3}\)xy^4 + \(\frac{3}{4}\)x^2y^3 - \(\frac{1}{2}\)x^5y + 2xy^4 - x^2y^3
bài 2 : tính giá trị biểu thức
A = 3x^3y + 6x^2y^2 + 3xy^3 tại x = \(\frac{1}{2}\); y = -\(\frac{1}{3}\)
B = x^2y^2 + xy +x^3 + y^3 tại x = -1 ; y = 3
bài 3 : cho đa thức
P(x) = x^4 + 2x^2 + 1
Q(x) = x^4 + 4x^3 + 2x^2- 4x + 1
tính P(-1); P(\(\frac{1}{2}\)) ; q(-2);Q(1)
bài 4 : tìm hệ số a của đa thức M(x)= ax^2 + 5x - 3 , tại M (-3) = 0
bài 5 : tìm các hệ số a , b của đa thức f(x) = ax + b , biết f(2) = 3 ; f(-1) = 9
Với x,y là những số thực thỏa mãn đẳng thức x2y2 + 2y+1=0, tìm giá trị lớn nhất và nhỏ nhất của biểu thức P=\(\frac{xy}{3y+1}\)
Bài 1:Thực hiện phép tính a) x(3x^2 + 2x) b) (x + 3)^2 c) (x - 2)^3 Bài 2: Phân tính đa thức thành nhân tử a) 6x^3y - 9x^2y^2 b) 4x^2 - 25 c) x^2y - xy + 7x - 7y Bài 3: a) Tính nhanh giá trị biểu thức: M = 4x^2 - 20x + 25 tại x = 105/2 b) Tìm x, biết: x^3 - 1/9x = 0
tính giá trị của biểu thức sau
a,A=3x^3-2y^3-6x^2y^2+xy. với x=2/3;y=1/2
b,B= 2x+xy^2-x^2y-2y .với x=-1/2;y=-1/3
a, A=3.(2/3)^3-2.(1/2)^3-6.(2/3)^2.(1/2)^2+(2/3).(1/2)
=8/9-1/4-2/3+1/3=8/9-1/4-1/3=11/36
b, B=-1+(-1/18)+1/12+2/3=-11/36
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
Tìm giá trị nhỏ nhất của các biểu thức:
\(A=2x^2+2xy+y^2-2x+2y+2\)
\(B=x^4-8xy-x^3y+x^2y^2-xy^3+y^4+200\)
\(C=x^2+xy+y^2-3x-3y\)