Tìm x,y bik: \(\frac{2}{x}=\frac{3}{y}\)& xy = 96
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và a+b+c khác 0; a=2003.Tính b,c
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\):a khác b; c khác a.CMR \(a^2\)=bc.Điều ngược lại có đúng không?
Cho biểu thức P=\(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{z+y}\)
Tìm giá trị P bik: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Timf x, y bik\(\frac{x}{7}=\frac{y}{13}\) & x + y = 40
Áp ụng t/c của dãy tỉ số = nhau ta được :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Rightarrow\frac{x}{7}=2\Rightarrow x=14\)
\(\Rightarrow\frac{y}{13}=2\Rightarrow y=26\)
GIẢI HỆ PHƯƠNG TRÌNH
\(\frac{2x+1}{4}-\frac{y-2}{3}=\frac{1}{12}\)
\(\frac{x+5}{2}=\frac{y+7}{3}-4\)
giúp mik giải nhé ( bên trên là hệ phương trình đó do mik ko bik ghi dấu ngoặc ở đầu nên để vậy)
\(\frac{2x+1}{4}\)-\(\frac{y-2}{3}\)=\(\frac{1}{12}\)
=\(\frac{3.\left[2x+1\right]}{12}\)-\(\frac{4.\left[y-2\right]}{12}\)=\(\frac{1}{12}\)
=6x+3-4y-6=1
=6x-3-4y=1
=6x-4y=4
=2[3x-2y]=4
MK MỚI HỌC LỚP 8 ,CHÚA SẼ CHUYỂN HỆ PHƯƠNG TRÌNH CUỐI CÙNG ,BẠN GIẢI NỐT NHA
Bài 1: Tìm x và y, biết:
\(\frac{x}{y}=\frac{5}{3}\left(x^2+y^2=4\right)\) (x và y là 2 số tự nhiên khác 0 )
Bài 2: Tìm x; y; z biết: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\left(x+y+z=138\right)\)
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
cho A=\(\left(\frac{x}{y^2+xy}-\frac{x-y}{x^2+xy}\right):\left(\frac{y^2}{x^3-xy^2}+\frac{1}{x+y}\right):\frac{x}{y}\)
a) tìm TXĐ của A
b) tìm x,y để A>1 và y<0
TXD : \(\hept{\begin{cases}y\left(x+y\right)\ne0\\\left(x+y\right)x\ne0\\\left(x-y\right)\left(x+y\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne y\\x\ne-y\\xy\ne0\end{cases}}}\)
Câu b :
\(A=\frac{xy-\left(x+y\right)y}{xy\left(x+y\right)}:\frac{y^2+x\left(x-y\right)}{x\left(x^2-y^2\right)}:\frac{x}{y}\)
\(=\frac{x^2-xy+y^2}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}.\frac{y}{x}\)\(=1-\frac{y}{x}\)
Để \(A>1\)mà \(y< 0\)nên \(x\)và \(y\)phải cùng dấu \(\Rightarrow x< 0\)
Tìm x , y , z nếu :
a)\(\frac{x+y+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x+3y-z=50
b) \(\frac{x-1}{2}=\frac{2x-2}{4}\)
\(\frac{y-2}{3}=\frac{3y-6}{9}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z+3-2-6}{9}=\frac{50+3-2-6}{9}=\frac{45}{9}=5\)=>x-1=5.2=10
=>x=11
y-2=5.3=15
=>y=17
z-3=5.4=20
=>z=23
Vậy (x;y;z)=(11;17;23)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+x-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x+y+z khác 0).Do đó x+y+z = 0.5
Thay kq này vào bài ta được:
\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)
Tức là : \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{-2,5-z}{z}=2\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\)
1.Tìm x;y;z biết :\(\frac{x}{3}=\frac{y}{4},\frac{y}{3}=\frac{z}{5}\)và 2x -3y +z=6
2.Tìm 2 số x,y bt rằng :\(\frac{x}{2}=\frac{y}{5}\)và x.y =40
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
Tìm x,y:
\(\frac{x}{2}+\frac{y}{3}=\frac{x+y}{2+3}\)
\(\frac{x-1}{9}+\frac{1}{3}=\frac{1}{y+2}\)
\(\frac{x}{2}+\frac{y}{3}=\frac{x+y}{2+3}=>\frac{3x}{6}+\frac{2y}{6}=\frac{x+y}{5}\)
tìm x,y (theo 2 cách: cách thế và cách cộng đại số)
a \(\frac{3-x}{2}+y=1và\frac{2-y}{3}+x=2\)
b, \(\frac{x}{2}-\frac{y}{3}=\frac{1}{6}và\frac{x-y}{3}=4\)
c, \(\frac{x-2}{3}=y\)và \(\frac{x-y}{2}=\frac{x}{2}\)
d, \(\frac{-x+3}{y}=\frac{1}{2}\)và x-2y=0.75