Cho tam giác ABC, lấy M thuộc BC sao cho MC/MB=1/2; lấy N thuộc AC sao cho NC/NA=1/2. Chứng minh:
a) MN song song AB, AB = 3MN
b) AM giao BN tại G. Chứng minh : AG/GM=BG/GN=3
cho tam giác ABC lấy M thuộc BC sao cho MB/MC=2/3 kẻ MH//AC ,kẻ MK//AB
a)tinh MB,MC biết BC=25 cm
b)chứng minh HB.HC=BM.KM
Cho tam giác ABC, lấy D thuộc BC. Gọi M là trung điểm AD. Trên tia đối MB, lấy điểm E sao cho ME=MB. TRên tia đối MC, Lấy điểm F sao cho MF=MC. Chứng minh:
a) tam giác AME = tam giác DMB ; AE//BC
b) AE // BD; AF // BD
c) BF // CE
Cho tam giác ABC ,D thuộc BC sao cho BD =1/2 ĐC .Lấy M là trung điểm AD .Trên tia đối của tia MB lấy điểm E Sao cho ME= MB. Trên tia đối của tia MC lấy điểm F sao cho MF =MC .Chứng minh a,AE =1/2 AF b, Điểm A nằm giữa E và F
cho tam giác ABC đều nội tiếp đường tròn tâm O lấy M trên cung nhỏ BC trên dây AM lấy điểm D sao cho MD= MB
a) C/m tam giác MBD đều
b) C/m MB + MC = AM
c) C/m 4 điểm A, O, B, D thuộc 1 đường tròn
d) Xác định vị trí M trên cung BC nhỏ để MB+ MC lớn nhất.
Cho tam giác ABC và M thuộc BC sao cho MB= 1/2 MC. Từ M kẻ MD//AC (D thuộc AB) và ME//AB (E thuộc AC). Biết chu vi tam giác ABC= 24cm.
Tính chu vi của tam giác DBM và tam giác EMC.
Cho tam giác ABC có góc ACB < ABC < 90 độ. kẻ AD vuông góc với BC ( D thuộc BC ). Lấy M là trung điểm của AD. Trên tia đối MB lấy điểm E sao cho ME=MB, trên tia đối của tia MC lấy điểm F sao cho MF = MC. chứng minh rằng : a) AE=BD
b)So sánh BD và CD
c) Ba điểm A,E,F thẳng hàng . giúp mình với, mình cần gấp
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hbh
=>AE=BD
b: Xét ΔABC có góc ACB<góc ABC
nên AB<AC
Xét ΔABC có
AB<AC
BD,CD lần lượt là hình chiếu của AB,AC trên BC
=>BD<CD
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hbh
=>AF//DC
=>AF//BC
mà AE//BC
nên F,A,E thẳng hàng
Cho tam giác ABC có góc ACB < ABC < 90 độ. kẻ AD vuông góc với BC ( D thuộc BC ). Lấy M là trung điểm của AD. Trên tia đối MB lấy điểm E sao cho ME=MB, trên tia đối của tia MC lấy điểm F sao cho MF = MC. chứng minh rằng :
a) AE=BD
b)So sánh BD và CD
c) Ba điểm A,E,F thẳng hàng
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hìnhbình hành
=>AE=BD
b: góc ACB<góc ABC
=>AB<AC
=>DB<DC
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hình bình hành
=>AF//DC
=>F,A,E thẳng hàng
Cho tam giác ABC cân tại A . Gọi M là 1 điểm trên BC sao cho MB<MC . Lấy O thuộc AM. Chứng minh rằng AOB>AOC
Cậu tham khảo ở đây ạ:
https://olm.vn/hoi-dap/detail/100073350231.html
hok tốt!!
^^
Cho tam giác ABC đều, nội tiếp (O). M là điểm thuộc cung nhỏ BC. Trên MA lấy điểm D sao cho MD=MB.CMR
a) Tam giác BMD là tam giác gì?
b) AM= MB+MC
c) AM cắt BC tại H. CM 1/BM+1/MC=1/MH
a/ Xét \(\Delta BMD\)ta có:
\(MD=MB\left(gt\right)\)=> \(\Delta BMD\)cân tại M
Mà \(B\widehat{M}D=A\widehat{C}B=60^0\)( 2 góc n.t chắn cung AB)
Nên \(\Delta BMD\)đều
b/ Ta có \(\hept{\begin{cases}A\widehat{B}D+D\widehat{B}C=A\widehat{B}C\\D\widehat{B}C+M\widehat{B}C=D\widehat{B}M\\A\widehat{B}C=D\widehat{B}M\left(=60^0\right)\end{cases}}\)
=> \(A\widehat{B}D=M\widehat{B}C\)
Xét \(\Delta ADB\)và \(\Delta MBC\)ta có :
\(\hept{\begin{cases}BD=BM\left(\Delta MBDđều\right)\\BA=BC\left(\Delta ABCđều\right)\\A\widehat{B}D=M\widehat{B}C\left(cmt\right)\end{cases}}\)
=> \(\Delta ADB=\Delta CMB\)(c-g-c)
=>\(AD=MC\)
Ta có: \(\hept{\begin{cases}AM=AD+MD\\MD=MB\left(\Delta MBDđều\right)\\AD=MC\left(cmt\right)\end{cases}}\)
=>\(AM=MB+MC\)
c/
Ta có: \(AB=AC\)<=>\(\widebat{AB}=\widebat{AC}\)
Xét \(\Delta MAB\)và\(\Delta MHC\)ta có:
\(B\widehat{A}M=H\widehat{C}M\)(2 góc n.t chắn cung MB )
\(A\widehat{M}B=H\widehat{M}C\)(2 góc n.t chắn 2 cung = nhau )
=>\(\Delta MAB\)đồng dạng\(\Delta MCH\)
=>\(\frac{MA}{MC}=\frac{MB}{MH}\)=>\(\frac{MA}{MB.MC}=\frac{1}{MH}\)=>\(\frac{MB+MC}{MB.MC}=\frac{1}{MH}\)=>\(\frac{1}{MB}+\frac{1}{MC}=\frac{1}{MH}\left(đpcm\right)\)