Cho f(x) = ax^3+4x(x^2-1)+8(a là hằng số)
g(x)=x^3-4x(bx+1)+c-3(b,c là hằng số)
tìm a; b; c sao cho f(x)=g(x)
Cho f(x) = ax^3 + 4x(x^2 - 1) + 8 và g(x) = x^3 + 4x(bx + 1) + c - 3.
Biết a; b; c là các hằng số. Tính a; b; c để f(x) = g(x)
Cho f(x)= ax^3 + 4x.(x^2-1) + 8 và g(x) =x^3 + 4x.(bx + 1) + c - 3 trong đó a,b,c là hằng số. Xác định a,b,c đề f(x)=g(x)
Cho f(x)= ax^3 + 4x ( x^2 - x) - 4x+ 8
g(x)= x^3 - 4x ( bx+1) + c
Trong đó a,b,c là hằng số . Xác định a, b, c để f(x)= g(x)
\(f\left(x\right)=ax^3+4x\left(x^2-x\right)-4x+8\)
\(f\left(x\right)=ax^3+4x^3-4x^2-4x+11-3\)
\(f\left(x\right)=x^3\left(a+4\right)-4x\left(x+1\right)+11-3\)
Để \(f\left(x\right)=g\left(x\right)\)thì:
\(\Leftrightarrow x^3\left(a+4\right)-4x\left(x+1\right)+11-3\)
\(\Leftrightarrow x^3-4x\left(bx+1\right)+c-3\)
Đến đây tự tìm tiếp a ; b ; c đi nha
cho f(x)=ax^3+4x*(x^2-1)+8 và g(x)=x^3+4x*(bx+1)+c-3
Trong đó a,b,c là hằng số.Xác định a,b,c để f(x)=g(x)
f(x)= ax^3+4x(x^2-1)+8 = ax^3 + 4x^3 - 4x + 8 = (a + 4)x^3 - 4x + 8
g(x)= x^3 - 4x(bx+1) +c-3 = x^3 - 4bx^2 - 4x + c - 3
Để f(x)=g(x) thì a + 4 = 1, -4b =0 và c - 3 = 8
=> a = -3, b = 0, c = 11
f(x)=2x2 +ax +4 (a là hằng)
g(x)= x2 -5x - b ( b là hằng)
tìm hệ số a , b sao cho f(1) = g(2) và f(-1) = g(d)
giúp mình với
Câu trả lời hay nhất: f(x)= ax^3+4x(x^2-1)+8 = ax^3 + 4x^3 - 4x + 8 = (a + 4)x^3 - 4x + 8
g(x)= x^3 - 4x(bx+1) +c-3 = x^3 - 4bx^2 - 4x + c - 3
Để f(x)=g(x) thì a + 4 = 1, -4b =0 và c - 3 = 8
=> a = -3, b = 0, c = 11
Cho f(x) = ax3 + 4x(x2 - x ) - 4x + 8
g(x) = x3 - 4x(bx + 1 ) + c - 3
a,b,c là hằng số.
Xác định a,b,c để f(x) = g(x)
1. Cho f(x) = ax2 + 4x (x2-1) + 8
g(x) = 4x3 - 4x (bx +1) + c-3
Trong đó a; b; c là hằng số.
Xác định a; b; c để f(x)= g(x)
2. Cho f(x) = 2x2 + ax + 4
g(x) = x2 - 5x - b
Biết a; b là hằng số..
Tìm hệ số a; b sao cho g(1) = g(2)
và f(1) = g(5)
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
Cho f(x) = ax^3 + 4(x^2 -1 ) +8
g(x)= x^3 - 4x (bx +1) - c - 3
Với a ,b ,c là hằng số .Xác định a ,b ,c để f(x) =g(x)
Lời giải:
$f(x)=ax^3+4x^2+4$
$g(x)=x^3-4bx^2-4x-(c+3)$
Để $f(x)=g(x), \forall x$ thì:
\(\left\{\begin{matrix}\\
a=1\\
4=-4b\\
0=-4\\
4=-(c+3)\end{matrix}\right. (\text{vô lý})\)
Vậy không tồn tại $a,b,c$ thỏa mãn đề.
cho f(x)=ax^3+4x(x^2-1)+8 và g(x)=x^3 +4x(bx+1)+c-3 trong đó a,b,c là hằng số. Xác định a,b,c để f(x)=g(x)
f(x)= ax3+4x(x2-1)+8 = ax3 + 4x3 - 4x + 8 = (a + 4)x3 - 4x + 8
g(x)= x3 - 4x(bx+1) +c-3 = x3 - 4bx2 - 4x + c - 3
Để f(x)=g(x) thì a + 4 = 1, -4b =0 và c - 3 = 8
=> a = -3, b = 0, c = 11
sao mi lại có đề ni , mi học BD TOÁN đúng ko
f(x) = ax3 + 4x(x2 - x) - 4x + 8; g(x) = x3 - 4x(bx + 1) + c -3
Trong đó a,b,c là hằng số. Xác định a,b,c để f(x) = g(x)
ta có
f(x)= ax3 + 4x(x2 -x) - 4x +8
= ax3 - (4x - 4x(x2-x) ) +8
= ax3 - ( 4x(1-x2-x) ) +8
Dễ thấy nếu f(x)=g(x) thì a=1 ; 1-x2-x = bx-1 ; 8 = c- 3
=> a=1 ; 1-x(x-1) = bx+1 ; c=11
=> a=1 ; b= 1-x ; c=11
vậy .........
bạn ơi sai đề rùi
phải là bx+1 mới đúng
BẠn ơi
BẠn viết sai đề rồi
phải bx+1 mới đúng