Giải các phương trình sau bằng hai cách (chuyển số hạng tự do sang vế phải; bằng công thức nghiệm) và so sánh kết quả tìm được :
a) \(4x^2-9=0\)
b) \(5x^2+20=0\)
c) \(2x^2-2+\sqrt{3}=0\)
d) \(3x^2-12+\sqrt{145}=0\)
Giải các phương trình sau bằng cách (chuyển các số hạng tự do sang vế phải bằng công thức nghiệm) và so sánh kết quả tìm được: 4 x 2 - 9 = 0
Giải các phương trình sau bằng cách (chuyển các số hạng tự do sang vế phải bằng công thức nghiệm) và so sánh kết quả tìm được: 5 x 2 + 20 = 0
5 x 2 + 20 = 0 ⇔ 5 x 2 = - 20
Vế trái 5 x 2 ≥ 0; vế phải -20 < 0
Không có giá trị nào của x để 5 x 2 = - 20
Phương trình vô nghiệm.
∆ = 0 2 - 4.5.20 = - 400 < 0. Phương trình vô nghiệm.
Giải các phương trình sau bằng cách (chuyển các số hạng tự do sang vế phải bằng công thức nghiệm) và so sánh kết quả tìm được: 3 x 2 - 12 + 145 = 0
Giải các phương trình sau bằng cách (chuyển các số hạng tự do sang vế phải bằng công thức nghiệm) và so sánh kết quả tìm được: 2 x 2 - 2 + 3 = 0
Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số: x 2 - 3x + 1 = 0
Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số. x 2 – 6x + 5 = 0
Ta có : x 2 – 6x + 5 = 0 ⇔ x 2 – 2.3x + 5 + 4 = 4
⇔ x 2 – 2.3x + 9 = 4 ⇔ x - 3 2 = 2 2
⇔ x – 3 = ± 2 ⇔ x – 3 = 2 hoặc x – 3 = -2
⇔ x = 1 hoặc x = 5
Vậy phương trình có hai nghiệm x 1 = 1, x 2 = 5
Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số. x 2 – 3x - 7 = 0
Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số. 3 x 2 – 12x + 1 = 0
Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số: x 2 + 2 x - 1 = 0