Tìm GTLN của các biểu thức sau:
a) P= \(\frac{2012}{x^2+4x+2013}\) ; b) Q= \(\frac{a^{2012}+2013}{a^{2012}+2011}\)
Tìm GTLN của các biểu thức sau:
a) P= \(\frac{2012}{x^2+4x+2013}\) ; b) Q= \(\frac{a^{2012}+2013}{a^{2012}+2011}\)
TL
Giá trị của biểu thức lớn nhất khi mẫu số nhỏ nhất.
Ta có x2 + 4x + 2013 = x2 + 4x + 4 + 2009 = (x + 2)2 + 2009 >= 2009.
Biểu thức trên nhỏ nhất sẽ = 2009 khi (x + 2)2 = 0. Suy ra x = -2.
Vậy GTLN = 2012/2009.
TÌM giá trị lớn nhất của các biểu thức sau
a,\(P=\frac{2012}{X^2+4X+2013}\)
b,\(Q=\frac{a^{2012}+2013}{a^{2012}+2011}\)
TÌM giá trị lớn nhất trong các biểu thức sau
a,\(P=\frac{2012}{X^2+4X+2013}\)
b,\(Q=\frac{a^{2012}+2013}{a^{2012}+2011}\)
\(x^2+4x+2013=x^2+4x+4+2009=\left(x+2\right)^2+2009\ge2009\)
\(\Rightarrow P\le\frac{2012}{2009}\)
\(\frac{a^{2012}+2011}{a^{2012}+2011}+\frac{3}{a^{2012}+2011}=1+\frac{3}{a^{2012}+2011}\\ Qmax\Leftrightarrow a^{2012}min\Leftrightarrow a=0\)
Thay vào là ra
P lớn nhất bằng 2013
Q lớn nhất bằng 2013/2011 bạn nhé!~
Tìm giá tri lớn nhất của các biểu thức sau:
a) \(P=\frac{2012}{x^2+4x+2013}\) b) \(Q=\frac{a^{2012}+2013}{a^{2012}+2011}\)
P lớn nhất bằng 2013
Q lớn nhất bằng 2013/2011
TÌM giá trị lớn nhất trong các biểu thức sau
a,\(P=\frac{2012}{X^2+4X+2013}\)
b,\(Q=\frac{a^{2012}+2013}{a^{2012}+2011}\)
Mình mới nghĩ được câu b thôi
\(Q=\frac{a^{2012}+2013}{a^{2012}+2011}=\frac{a^{2012}+2011+2}{a^{2012}+2011}=1+\frac{2}{a^{2012}+2011}\)
Để Q lớn nhất thì \(a^{2012}+2011\) phải là nhỏ nhất
Vì \(a^{2012}\ge0\)\(\Rightarrow a^{2012}\ge2011\)
\(\Rightarrow\) \(a^{2012}+2011\) nhỏ nhất khi bằng 2011
Vậy Q đạt giá trị lớn nhất khi:
Max Q = \(1+\frac{2}{2011}=\frac{2013}{2011}\)
tìm giá trị lớn nhất của các biêu thức sau
a,\(P=\frac{2012}{X^2+4X+2013}\)
b,\(Q=\frac{a^{2012}+2013}{a^{2012}+2011}\)
Tìm giá trị lớn nhất của biểu thức trên
A=\(\frac{2012}{x^2+4x+2013}\)
B=\(\frac{a^{2012}+2013}{a^{2012}+2011}\)
\(A=\frac{2012}{x^2+4x+2013}=\frac{2012}{x^2+4x+4+2009}=\frac{2012}{\left(x+2\right)^2+2009}\)
ta thấy biểu thức A đạt giá trị lớn nhất khi mẫu phân số nhỏ nhất
(x+2)2+2009 nhỏ nhất là bằng 2009 vì (x+2)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là bằng 0
Vậy biểu thức A lớn nhất bằng 2012/2009 khi x+2 = 0 <=> x = -2
\(B=\frac{a^{2012}+2013}{a^{2012}+2011}=\frac{a^{2012}+2011+2}{a^{2012}+2011}=\frac{a^{2012}+2011}{a^{2012}+2011}+\frac{2}{a^{2012}+2011}=1+\frac{2}{a^{2012}+2011}\)
B lớn nhất khi \(\frac{2}{a^{2012}+2011}\) lớn nhất , <=> a2012+2011 nhỏ nhất, a2012+2011 nhỏ nhất = 2011 khi a = 0
Vậy B lớn nhất là: \(B=1+\frac{2}{2011}=\frac{2013}{2011}\) khi a = 0
1. Tìm 2 số x,y biết:
a/ x/2=y/4 và x^2y^2=2
b/4x=7y và x^2+y^2=260
2. Tìm giá trị lớn nhất cua biểu thức:
a/ A=2012/ |x|+2013
b/ B= |x|+2012/ -2013
3. Tìm giá trị bé nhất của biểu thức:
a/ C= |x|+2012/ 2013
b/ D= -10/ |x|+10
4. Tìm các số nguyên n sao cho các biểu thức sau là số nguyên:
a/ P=3n+2/n-1
b/ Q= 3|x|+1/ 3|x|-1