1.Cho n >= 2. Chứng minh rằng tồn tại các số a1<a2<a3<...<an; a nguyên dương sao cho
1/a1^2 + 1/a2^2 +...+ 1/an^2 = 1/a^2
2.Cho 7 số tự nhiên phân biệt có tổng là 100. Chứng minh tồn tại 3 số có tổng lớn hơn hoặc bằng 50
Cho 2016 số nguyên dương a1, a2, a3, ... , a2016 thỏa mãn 1/a1+1/a2+...+1/a2016=30 Chứng minh rằng trong 2016 số dã cho tồn tại ít nhất 2 số bằng nhau
Bài 11. Chứng minh rằng tồn tại số nguyên dương k sao cho số 23k
có tận cùng là 0001.
Bài 12. Cho 15 số tự nhiên a1,a2,··· ,a15 thoả mãn 0 < a1 < a2 < ··· < a15 < 28. Chứng minh rằng tồn tại
3 chỉ số i < j < k mà ai = ak −aj
.Cho 2023 số tự nhiên bất kì: a1;a2;a3;...;a2023 . Chứng minh rằng tồn tại một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 2023.
cho 2016 số tự nhiên a1,a2,a3,...,a2015,a2016. Chứng minh rằng trong 2016 số ấy, tồn tại một số chia hết cho 2016 hoặc tồn tại một vài số có tổng chia hết cho 2016
cho 2016 số tự nhiên a1,a2,a3,...,a2015,a2016. Chứng minh rằng trong 2016 số ấy, tồn tại một số chia hết cho 2016 hoặc tồn tại một vài số có tổng chia hết cho 2016
đề rắc rối quá
cái nầy thì cậu tự làm đi
1) Tồn tại hay không số nguyên x thỏa mãn 202x + 122x + 20152x là một số chính phương.
2) Cho n là một số nguyên dương và n số nguyên dương a1 , a2 , a3 , …, an có tổng bằng 2n - 1. Chứng minh rằng tồn tại một số số trong n số đã cho có tổng bằng n.
20^2x có tận cùng là 0
12^2x=144^x;2012^2x=4048144^x
xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4
4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4
suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)
xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6
4948144^2k=(...6)^k có tận cùng là 6
suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)
từ(1) và (2) suy ra không tồn tại số x
Đinh Tuấn việt chép mạng thề luôn!
nếu x = 2k thì 2015^2x = 4060225^x chứ không phải là 4048144^x nha
Nếu mún bt hãy xem dòng thứ 2 của lời giải của bạn ấy có ghi là
2012^2x = 4048144^x
Nhưng đề bài lại nói là 2015^2x cơ mà ??
Cho 7 số tự nhiên a1,a2,a3,a4,a5,a6,a7 .Chứng minh rằng : tồn tại một số chia hết cho 7 hoặc tồn tại tổng một số số liên tiếp trong dãy chia hết cho 7
mình học lớp 4 bạn đố như này bố thằng nào trả lời được
Bài toán 1 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p.
Bài toán 2 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 3 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 4 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n
Câu 1:
cho 100 số nguyên dương a1, a2,... a100 thỏa mãn:
\(\frac{1}{a1^2}+\frac{1}{a2^2}+...+\frac{1}{a100^2}=\frac{199}{100}\)
chứng minh: trong 100 số a1, a2,... a100 đã cho tồn tại ít nhất 2 số bằng nhau.
Giả sử trong 100 số nguyên dương đã cho không tồn tại 2 số nào bằng nhau
Không mất tính tổng quát, giả sử \(a_1< a_2< a_3< ...< a_{100}\)
\(\Rightarrow a_1\ge1;a_2\ge2;a_3\ge3;....;a_{100}\ge100\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a^2_3}...+\frac{1}{a^2_{100}}\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\left(1\right)\)
Lại có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{199}{100}\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{a_1^2}+\frac{1}{a^2_2}+...+\frac{1}{a^2_{100}}< \frac{199}{100}\) trái với giả thiết
Vậy tồn tại ít nhất 2 số bằng nhau trong 100 số a1,a2,...,a100