Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Obama là thần tượng của...
Xem chi tiết
đinh thị bảo ngọc
Xem chi tiết
Phan Trần Nhất Nguyên
Xem chi tiết
Võ Phan Thảo Uyên
Xem chi tiết
le the linh
Xem chi tiết
le the linh
4 tháng 4 2017 lúc 20:58

giải được công nhận siêu và ngu

đề rắc rối quá

cái nầy thì cậu tự làm đi

Bùi Tuấn Hùng
6 tháng 4 2017 lúc 7:30

thế ơi mấy đè rùi

Đức Vũ
Xem chi tiết
Đinh Tuấn Việt
28 tháng 6 2015 lúc 22:23

20^2x có tận cùng là 0

12^2x=144^x;2012^2x=4048144^x

xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4

4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4 

suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)

xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6

4948144^2k=(...6)^k có tận cùng là 6

suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)

từ(1) và (2) suy ra không tồn tại số x

Phung Dinh Manh
4 tháng 1 2019 lúc 20:39

Đinh Tuấn việt chép mạng thề luôn!

nếu x = 2k thì 2015^2x = 4060225^x chứ không phải là 4048144^x nha

Nếu mún bt hãy xem dòng thứ 2 của lời giải của bạn ấy có ghi là

2012^2x = 4048144^x 

Nhưng đề bài lại nói là 2015^2x  cơ mà ??

phuong ngoc
Xem chi tiết
Mai Đức Minh
2 tháng 12 2021 lúc 9:29

mình học lớp 4 bạn đố như này bố thằng nào trả lời được

Khách vãng lai đã xóa
LÊ VĂN THINH
Xem chi tiết
Yuri
Xem chi tiết
ST
10 tháng 8 2018 lúc 15:51

Giả sử trong 100 số nguyên dương đã cho không tồn tại 2 số nào bằng nhau

Không mất tính tổng quát, giả sử \(a_1< a_2< a_3< ...< a_{100}\)

\(\Rightarrow a_1\ge1;a_2\ge2;a_3\ge3;....;a_{100}\ge100\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a^2_3}...+\frac{1}{a^2_{100}}\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\left(1\right)\)

Lại có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{199}{100}\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{a_1^2}+\frac{1}{a^2_2}+...+\frac{1}{a^2_{100}}< \frac{199}{100}\) trái với giả thiết

Vậy tồn tại ít nhất 2 số bằng nhau trong 100 số a1,a2,...,a100