1. Cho 25 số tự nhiên a1;a2;a3;a4;...a25 thỏa mãn điều kiện:
1/căn a1 +1/căn a2+....+1/căn a25 = 9
chứng minh trong 25 số tồn tại 2 số bằng nhau
Cho 2n số nguyên dương a1, a2, a3,......, a2n-1, a2n thỏa mãn:
a12 + a32 + a52 + ..... + a2n-12 = a22 + a42 + a562 + ..... + a2n2
Chứng minh rằng a1 + a2 + a3 + ...... + a2n-1 + a2n là hợp số (n \(\in\) N*)
Cho 51 số nguyên dương phân biệt không vượt quá 100. Chứng minh tồn tại 2 số mà tổng của chúng =101.Và tồn tại 2 số có hiệu là 50
Cho n số nguyên dương a1,a2,...,an. CMR:
(a1+a2+...+an)(1/a1 +1/a2 +...+ 1/an ) > hoặc = n^2
cho 2015 số nguyên dương a1;a2;...;a2015 thỏa mãn điều kiện
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+\frac{1}{\sqrt{a_3}}+...+\frac{1}{\sqrt{a_{2015}}}\ge89\)
chứng minh rằng trong 2015 số nguyên dương đó luôn tồn tại ít nhất 2 sô bằng nhau
Cho các số nguyên dương : a1;a2;a3;....a2015 sao cho :
N = a1 + a2 + a3 +.....+ a2015 chia hết cho 30
Chứng minh : M= a15 + a25 + a35 + ..... + a20155 chia hết cho 30
Cho góc xOy bằng 120, trên tia phân giác Oz của góc xOy lấy điểm A sao cho độ dài đoạn thẳng OA là 1 số nguyên lớn hơn 1. Chứng minh rằng luôn tồn tại ít nhất 3 đường thẳng phân biệt đi qua A và cắt 2 tia Ox, Oy lần lượt tại B và C sao cho độ dài các đoạn thẳng OB và OC đều là các số nguyên dương
1,cho biểu thức
P=(\(\frac{x\sqrt{x}}{x-1}\)_ \(\frac{3\sqrt{x}}{\sqrt{x}+1}\)) : \(\frac{x-\sqrt{x}}{4\sqrt{x}+4}\)
a, tìm x để P có nghĩa
b, rút gon P
c, tìm x thuộc Z để P thuộc Z
2,cho 100 số tự nhiên a1 , a2, a3....a100 thỏa mãn
\(\frac{1}{\sqrt{a1}}\)+\(\frac{1}{\sqrt{a2}}\)+\(\frac{1}{\sqrt{a3}}\)......+\(\frac{1}{\sqrt{a100}}\)=19
chứng minh rằng trong 100 số đó tồn tại 2 số bằng nhau
mọi người giúp mình với ak. mình cảm ơn nhiều
chứng minh bđt này thử
(a1+a2+a3+...+an)(1/a1+1/a2+...+1/an) >= n^2
chứng minh quy nạp theo hệ quả Cauchy nhé