cho hình thang ABCD vuông(gócA=gócD) gọi MN lần lượt là trung điểm của BC và AD
Chứng minh ; a) tam giác MAD cân
b) góc MAB=gócMDC
Cho M và N là trung điểm các đường chéo AC và BD của hình thang vuông ABCD( vuông tại A và D). Vẽ đường tròn ngoại tiếp các tam giác ABN và CDM cắt BC lần lượt tại Q và R. Gọi K là trung điểm của MN .chứng minh KQ=KR
Cho hình thang vuông ABCD (AB //CD, ) AB = 3cm, DC = 5cm. Gọi M và N lần lượt là trung điểm của AD và BC. Đường thẳng qua B song song với AD cắt DC tại E. a) Tính MN. b) Tứ giác ABED là hình gì? Vì sao? c) Gọi I là giao điểm của BE và MN. Chứng minh MI = 3.IN. d) Chứng minh tam giác ENC cân.
a) Xét hình thang ABCD(AB//CD) có
M là trung điểm của AD(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của hình thang ABCD(Định nghĩa đường trung bình của hình thang)
Suy ra: MN//AB//DC và \(MN=\dfrac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)
hay \(MN=\dfrac{3+5}{2}=\dfrac{8}{2}=4\left(cm\right)\)
b) Ta có: AD//BE(gt)
AD\(\perp\)DC(gt)
Do đó: BE\(\perp\)DC(Định lí 2 từ vuông góc tới song song)
Xét tứ giác ABED có
\(\widehat{BAD}=90^0\)(gt)
\(\widehat{ADE}=90^0\)(gt)
\(\widehat{BED}=90^0\)(cmt)
Do đó: ABED là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
cho hình thang ABCD có AB//CD. Gọi M,N lần lượt là trung điểm của AD và BC và MN//AB . Gọi I,K lần luotj là giao điểm của MN với BD và AC. Biết AB =6 a)Tính MI
b) chứng minh MI=KN
cho hình thang cân ABCD (AB//CD) , vẽ AH của hình thang cân = 10cm. gọi M, N lần lượt là trung điểm của AD và BC. tính dộ đai MN biết AC vuông góc với BD.
Cho hình thang cân ABCD ( đáy AB và CD ). Gọi M,N lần lượt là trung điểm của AD và BC
a) Biết AB=30cm , MN=60cm . Tính CD.
b) Gọi I , K lần lượt là trung điểm AB và CD . Chứng minh tam giác KAB cân và KI vuông góc AB
▪︎ GIÚP EM PHẦN KI VUÔNG GÓC AB VỚI Ạ 😭
cho hinh thang vuông ABCD có góc A=gócD = 90 độ, AB=7, BC=10, AD=13, đường trung trức của BC cắt AD ở N, gọi M là trung điểm của BC. Tính MN
cho hinh thang vuông ABCD có góc A=gócD = 90 độ, AB=7, BC=10, AD=13, đường trung trức của BC cắt AD ở N, gọi M là trung điểm của BC. Tính MN
Bài 1 cho hình thang ABCD (AB//CD), Gọi M, N, P lần lượt là trung điểm của AD; BC; BD
a)Chứng minh M, N, P thẳng hàng
b)gọi K là giao điểm của AC và MN. Chứng minh K là trung điểm AC
c) chứng minh PK = (CD-AB):2
a) Xét tg DAB có AM=MD (gt)
DP=PB(gt)
=> MP là dg tb tg DAB => MP //AB (1)
Xét tg BDC có BN=NC(gt)
DO=PB(gt)
=> PN là dg tb tg DBC=> PN//DC. Mà DC//AB ( hthang ABCD)
=> PN//AB. (2)
Từ (1) và (2) => M,N,P thẳng hàng
b) Xét tg ABC có BN=NC(gt)
NK//AB( MN//AB)
=> K td AC
C) xét tg ABCD có AM=MD(gt)
BN=NC(gt)
=> MN là dg tb tg ABCD => MN=(AB+CD)/2 (1)
ta có MP là dg tb tg ABD(cmt)=> MP=1/2AB=AB/2 (2)
Ta có NK là dg tb tg ABC(cmt) =>NK=1/2AB=AB/2. (3)
Mà ta có MN= MP+PK+NK (4)
Từ (1)(2)(3)(4) suy ra
(AB+CD)/2 = AB/2+AB/2+PK
<=> (AB+CD-AB-AB)/2=PK
<=>(-AB+CD)/2=PK
=> (CD-AB):2=PK
a: Xét ΔDAB có
M là trung điểm của AD
P là trung điểm của BD
Do đó: MP là đường trung bình của ΔDAB
Suy ra: MP//AB
Xét hình thang ABCD có
M là trung điểm của AD
N là trung điểm của BC
Do đó: MN là đường trung bình của hình thang ABCD
Suy ra: MN//AB//CD
Ta có: MN//AB
MP//AB
mà MN và MP có điểm chung là M
nên M,N,P thẳng hàng
b: Xét ΔABC có
N là trung điểm của BC
NK//AB
Do đó: K là trung điểm của AC
1)Cho hình thang cân ABCD (AB//DC) có B=2C. Tính B,C,D
2)Cho hình thang cân ABCD (AB//DC) O là giao điểm hai đường chéo AC và BD. Chứng minh OA=ob VÀ oc=op
3)Cho tứ giác ABCD (AB nhỏ hơn DC) AH vuông BC. gọi M,N,I lần lượt là trung điểm AC,AC,BC. chứng minh:
a) MN là đường trung trực của AH
b) Chứng minh tứ giác MHIN là hình thang cân