3. Cho tam giác ABC vuông tại A, có:
a) C = 60độ; BC =16. Tính AB, AC
b) C = 60độ; AB= 5 căng3. Tính BC, AC
4. Cho tam giác ABC vuông tại A, biết cosB = 0,8. Tính các tỉ số lượng giác của góc C.
Cho tam giác ABC có 3 góc nhọn. Vẽ về phía ngoài tam giác ABC các tam giác ABD vuông tại A có AD=AB, tam giác ACE vuông tại A có AE=AC. Chứng minh
a) CD=BE
b) CD vuông góc vs BE
Cho tam giác ABC có 3 góc nhọn. Vẽ về phía ngoài tam giác ABC các tam giác ABD vuông tại A có AD=AB, tam giác ACE vuông tại A có AE=AC. Chứng minh
a) CD=BE
b) CD vuông góc vs BE
Cho tam giác ABC có 3 góc nhọn. Vẽ về phía ngoài tam giác ABC các tam giác ABD vuông tại A có AD=AB, tam giác ACE vuông tại A có AE=AC. Chứng minh
a) CD=BE
b) CD vuông góc vs BE
Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm
a)Tính AH
b)CM: Tam giác ABH=tam giác ACH
c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân
d)CM:AH là trung trực của DE
Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H
a)Tam giác ADB=tam giác ACE
b)Tam giác AHC cân
c)ED song song BC
d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông
Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:
a)tam giác ABD=tam giác EBD
b)Tam giác ABE là tam giác cân
c)DF=DC
Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm
a) Tính BC
b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC
c)CM: DE đi qua trung điểm cạnh BC
Cho hình chóp S. ABC có đáy là tam giác ABC đều cạnh a, tam giác SBA vuông tại B, tam giác SAC vuông tại C. Biết góc giữa hai mặt phẳng (SAB) và (ABC) bằng 60 o . Tính thể tích khối chóp S.ABC theo a.
A. 3 a 3 8
B. 3 a 3 12
C. 3 a 3 6
D. 3 a 3 4
Chọn B
Gọi D là hình chiếu của S lên mặt phẳng (ABC), suy ra S D ⊥ A B C .
Ta có S D ⊥ A B và S B ⊥ A B ( g t ) , suy ra A B ⊥ S B D ⇒ B A ⊥ B D .
Tương tự có A C ⊥ D C hay tam giác ACD vuông ở C.
Dễ thấy ∆ S B A = ∆ S C A (cạnh huyền và cạnh góc vuông), suy ra SB=SC. Từ đó ta chứng minh được ∆ S B D = ∆ S C D nên cũng có DB=DC.
Vậy DA là đường trung trực của BC, nên cũng là đường phân giác của góc B A C ^ .
Ta có
D
A
C
^
=
30
o
, suy ra
D
C
=
a
3
. Ngoài ra góc giữa hai mặt phẳng (SAB) và (ABC) là
S
B
D
^
=
60
o
suy ra
tan
S
B
D
^
=
S
D
B
D
⇒
S
D
=
B
D
tan
S
B
D
^
=
a
3
.
3
=
a
Vậy
V
S
.
A
B
C
=
1
3
.
S
∆
A
B
C
.
S
D
=
1
3
a
2
3
4
.
a
=
a
3
3
12
cho tam giác ABC vuông tại A , kẻ AH vuông góc với BC tại H
a) Cmr : tam giác HAC đồng dạng tam giác ABC
b) biết AC=16cm , BC=20cm . tính độ dài đoạn AB , AH
c) kẻ tia phân giác BD của góc ABC cắt AH tại I và cắt AC tại D . chứng minh : tam giác AID là tam giác cân
d) chứng minh : AI.AD=IH.DC
a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :
Góc AHC = góc BAC = 90o; góc C chung
=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)
b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144
=> \(AB=\sqrt{144}=12\left(cm\right)\)
Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')
=> Góc BIH = góc ADB
Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB
=> Tam giác AID cân tại A
d) ('Mình ko biết')
a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :
Góc AHC = góc BAC = 90o; góc C chung
=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)
b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144
=> \(AB=\sqrt{144}=12\left(cm\right)\)
Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')
=> Góc BIH = góc ADB
Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB
=> Tam giác AID cân tại A
Cho tam giác ABC về phía ngoài của tam giác vẽ tam giác BAD vuông cân tại A và tam giác CAE vuông cân tại A.
a) CMR: Đường trung tuyến AM của tam giác ABC vuông góc với DE tại K
b) CMR: Đường cao AH của tam giác ABC đi qua tđ N của DE
Tớ sẽ cho 4 tick, tớ hứa
Cho tam giác ABC vuông tại A, đường phân giác của góc B cắt AC tại H, kẻ HE vuông góc với BC, EH và AB cắt nhau tại I
a) Tam giác ABH = tam giác EBH
b) Cmr BH là đường trung trực của AE
c) Cm BH vuông góc với IC. Hỏi tam giác IBC là tam giác gì?
Cho tam giác ABC vuông tại A , AB<AC. Tia phân giác của góc B cắt AC tại D.Từ D kẻ DH vuông góc với BC (H thuộc BC ) a, CM tam giác ABD = tam giác HBD b, Đường thẳng HD cắt đường thẳng DA tại K . CM tam giác BKC cân c, Gọi M là trung điểm của KC. CM 3 điểm B,D,M thẳng hàng