So sánh A và B: A=3*5*7*...*2019*2021 ; B=2*4*6*...*2020*2022
Cần làm gấp cảm ơn !
So sánh A và B
A=\(\dfrac{4-7^{2020}}{7^{2020}}\)+\(\dfrac{5+7^{2021}}{7^{2021}}\)
B=\(\dfrac{1}{7^{2019}}\)
Ta có:
\(A=\dfrac{7\left(4-7^{2020}\right)}{7^{2021}}+\dfrac{5+7^{2021}}{7^{2021}}\)
\(A=\dfrac{28-7^{2021}+5+7^{2021}}{7^{2021}}=\dfrac{33}{7^{2021}}\)
Ta có: \(B=\dfrac{7^2}{7^{2021}}=\dfrac{49}{7^{2021}}\)
=> B>A
Bài 1:
A,3+5+7+9+,...+151
Bài 2:So sánh 2 biểu thức
A=2019/2020+2020/2021 và
B=2019+2020/2020+2021
Không làm tính cộng
bài 1:
ssh của A là:
(151-3):2+1=75
A=(151+3)x75:2=5775
đáp số: 5775
A = 4 -7 ^ 2020 / 7 ^ 2020 + 5+7 ^2021 /7^ 2021
B = 1 /7 2019
SO SÁNH A VÀ B
LÀM NHANH MÌNH CẦN GẤP
So sánh
A=4-7^2020/7^2020 + 5+7^2021/7^2021 và B = 1/7^2019
giúp mình vs các bạn
Ta có:
\(A=\frac{4-7^{2020}}{7^{2020}}+\frac{5+7^{2021}}{7^{2021}}\) và \(B=\frac{1}{7^{2019}}\)
Ta xét 2 trường hợp:
\(TH1:\frac{4-7^{2020}}{7^{2020}}=\frac{-7^{2020}+4}{7^{2020}}=-1+\frac{4}{7^{2020}}\)
\(TH2:\frac{5+7^{2021}}{7^{2021}}=1+\frac{5}{7^{2021}}\)
\(\Rightarrow\left(-1+\frac{4}{7^{2020}}\right)+\left(1+\frac{5}{7^{2021}}\right)\)
\(\Rightarrow\frac{4}{7^{2020}}+\frac{5}{7^{2021}}\)
\(Do:\)
\(\frac{4}{7^{2020}}>\frac{1}{7^{2019}}\)
\(\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)
Nên:\(\frac{4}{7^{2020}}+\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)
\(\Rightarrow A>B\)
Bài 3: Không quy đồng hãy so sánh các phân số sau: a, 2019/2020 và 2021/2022 b, 2019/2017 và 2021/2019 c, 201/202 và 135/137 d, 2019/2018 và 2021/2019
1. So sánh
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\) và B= \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{13}{60}\)
b) \(C=\dfrac{2019}{2021}+\dfrac{2021}{2022}\) và \(D=\dfrac{2020+2022}{2019+2021}.\dfrac{3}{2}\)
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
So sánh A và B, biết:
A= 2018 x 2020 + 2021
và B= 2019 x 2019 + 2021
\(A=2018\times2020+2021\) và \(B=2019\times2019+2021\)
\(A=2018\times2019+2018+2021\)
\(B=2018\times2019+2019+2021\)
Vì \(2019>2018\Rightarrow A< B\)
Ta có :
2018 x 2020 = 2018 x ( 2019 + 1 ) = 2018 + 2018 x 2019 < 2019 + 2018 x 2019 = 2019 x ( 2018 + 1 )
= 2019 x 2019
=> 2018 x 2020 < 2019 x 2019
=> 2018 x 2020 + 2021 < 2019 x 2019 + 2021
=> A < B
\(A=2018.2020+2021=2018.2019+2018+2021\)
\(B=2019.2019+2021=2018.2019+2019+2021\)
\(\Rightarrow A< B\)
so sánh: A=2019^2019+1/2019^2020+1 và B=2019^2020+1/2019^2021+1
Vì 2019 + 2020 < 2019 + 2021 nên A < B
So sánh
a) 7/8 và 3/9
b) 2023/2021 và 2021/2022
c) 5/6 và 6/7
\(a)\dfrac{7}{8}=\dfrac{7\times9}{8\times9}=\dfrac{63}{72}\)
\(\dfrac{3}{9}=\dfrac{3\times8}{9\times8}=\dfrac{24}{72}\)
Do : \(\dfrac{63}{72}>\dfrac{24}{72}\) nên \(\dfrac{7}{8}>\dfrac{3}{9}\)
Không thì bạn có thể rút gọn 3/9 đi làm cho nó gọn ạ.
\(b)\) Ta thấy : \(\dfrac{2023}{2021}>1\) ( vì tử lớn hơn mẫu )
\(\dfrac{2021}{2022}< 1\) ( vì tử bé hơn mẫu )
Do đó : \(\dfrac{2023}{2021}>\dfrac{2021}{2022}\)
\(c)\dfrac{5}{6}=\dfrac{5\times7}{6\times7}=\dfrac{35}{42}\)
\(\dfrac{6}{7}=\dfrac{6\times6}{7\times6}=\dfrac{36}{42}\)
Do : \(\dfrac{36}{42}>\dfrac{35}{42}\) nên \(\dfrac{6}{7}>\dfrac{5}{6}\)