1, Phân tích đa thức A thành tích của hai tam thức bậc 2 với hệ số nguyên;
B = x4 - 6x3 + 11x2 - 6x + 1.
phân tích đa thức A thành tích của 1 nhị thức bậc nhất vs 1 đa thức bậc 3 với hệ số nguyên sao cho hệ số cao nhất của đa thức bậc ba là 1:A=3x^4+11x^3-7x^2-2x+1
Phân tích đa thức B thành tích của hai tam thức bậc hai với hệ số nguyên
\(B=x^4-6x^3+11x^2-6x+1\)
\(B=x^4-6x^3+11x^2-6x+1\)
\(=x^4-6x^3+9x^2+2x^2-6x+1\)
\(=\left(x^2\right)^2-2.x^2.3x+\left(3x\right)^2+2\left(x^2-3x\right)+1\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right).1+1^2\)
\(=\left(x^2-3x+1\right)^2\)
1, Phân tích đa thức A thành tích của hai tam thức bậc 2 với hệ số nguyên;
B = x4 - 6x3+ 11x2 - 6x + 1.
\(B=x^4-6x^3+11x^2-6x+1\)
\(=\left(x^4-3x^3+x^2\right)-\left(3x^3-9x^2+3x\right)+x^2-3x+1\)
\(=x^2\left(x^2-3x+1\right)-3x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)
\(=\left(x^2-3x+1\right)^2\)
Phân tích đa thức A thành tích của một nhị thức bậc nhất với 1 đa thức bậc ba với hệ số nguyên nguyên sao cho hệ số cao nhất của đa thức là 1.
\(A=3x^4+11x^3-7x^2-2x+1\)
Ta có
\(A=3x^4+11x^3-7x^2-2x+1\)có tận cùng là 1
\(1=1\cdot1=-1\cdot\left(-1\right)\)
\(\Rightarrow3x^4+11x^3-7x^2-2x+1=\left(ax+1\right)\left(bx^3+cx^2+dx+1\right)\)
Vì \(3=1\cdot3=\left(-1\right)\cdot\left(-3\right)\)
=> Ta thấy A=1 hoặc A=-1 là không thể
=> A=-3 hoặc A=3
Đặt phép tính cho từng trường hợp ta được
\(3x^4+11x^3-7x^2-2x+1=\left(-3x+1\right)\left(-x^3-4x^2+x+1\right)\)
phân tích đa thức B thành tích của 2 tam thức bậc 2 với hệ số nguyên; B = x^4 - 6x^3 + 11x^2 - 6X + 1
Với giá trị nguyên nào của a thì đa thức (x-a)(x-10)+1 có thể phân tích thành tích của hai đa thức bậc nhất có các hệ số nguyên ?
Vì đa thức (x−a)(x−10)+1(x−a)(x−10)+1 có thể phân tích thành tích của hai đa thức bậc nhất có hệ số nguyên nên ta chỉ có hai cách phân tích duy nhất là:
1)(x−a)(x−10)=(x+b)(x+c)2)(x−a)(x−10)=(−x+b)(−x+c)1)(x−a)(x−10)=(x+b)(x+c)2)(x−a)(x−10)=(−x+b)(−x+c) với b,c∈Zb,c∈Z
Ta sẽ tìm aa trong trường hợp 1)1), trường hợp còn lại làm tương tự
(x−a)(x−10)+1=(x−b)(x−c)⇔x2−(a+10)x+10a+1=x2+(b+c)x+bc(x−a)(x−10)+1=(x−b)(x−c)⇔x2−(a+10)x+10a+1=x2+(b+c)x+bc
Đồng nhất, ta được {b+c=−(a+10)bc=10a+1{b+c=−(a+10)bc=10a+1
⇒b,c⇒b,c là hai nghiệm nguyên của PT X2+(a+10)X+10a+1=0X2+(a+10)X+10a+1=0 với aa nguyên
⇒Δ=(a+10)2−40a−4=m2(m∈N)⇔(a−10)2−4=m2⇔(a−m−10)(a+m−10)=4⇒Δ=(a+10)2−40a−4=m2(m∈N)⇔(a−10)2−4=m2⇔(a−m−10)(a+m−10)=4
Vì a−m−10a−m−10 và a+m−10a+m−10 cùng tính chẵn lẻ và a+m−10≥a−m−10a+m−10≥a−m−10 nên:
{a+m−10=2a−m−10=2⇒a=12{a+m−10=2a−m−10=2⇒a=12
Hoặc :
{a+m−10=−2a−m−10=−2⇒a=8
\(x^2-\left(a+10\right)x+10a+1=0\)
\(\Delta=a^2+20a+100-40a-4=\left(a-10\right)^2-4=\left(a-6\right)\left(a-14\right)\)
a thuộc Z => \(\Delta\) là số nguyên ; để TM yêu cầu => \(\Delta\) là số chính phương
=> a =6 ; a =14
Phân tích đa thức thành tích của 1 nhị thức bậc nhất với một đa thức bậc ba với hệ số nguyên sao cho hệ số cao nhất của đa thức bậc ba là 1
\(A=3x^4+11x^3-7x^2-2x+1\)
1, Phân tích đa thức D thành tích của hai tam thức bậc 2 với hệ số nguyên và các hệ số cao nhất đều mang dấu dương;
C = x4 - x3 + 2x2 - 11x - 5.
\(C=x^4-x^3+2x^2-11x-5\)
\(=\left(x^4+x^3+5x^2\right)-\left(2x^3+2x^2+10x\right)-\left(x^2+x+5\right)\)
\(=x^2\left(x^2+x+5\right)-2x\left(x^2+x+5\right)-\left(x^2+x+5\right)\)
\(=\left(x^2-2x-1\right)\left(x^2+x+5\right)\)
Phân tích đa thức A thành tích của một nhị thức bậc nhất với một đa thức bậc ba với hệ số nguyên sao cho hệ số cao nhất của đa thức là 1:\(3x^4+11x^3-7x^2-2x+1\)
Vì tận cùng là 1 (1=1.1 hoặc -1.-1)
=> 3x4+3x3-7x2-2x+1 = (ax +1)(bx3+cx2+dx+1) (1=-1.-1 thì đặt dấu trừ ra ngoài sẽ mất dấu)
Vì 3=1.3 hoặc -1.-3
=> ta thấy a=1 hoặc -1 là không thế (nhìn vào là biết thôi)
=> a=-3 hoặc 3
Đặt phép tính chia cho từng trường hợp ta được 3x4+11x3-7x2-2x+1= (-3x+1)(-x3-4x2+x+1)
Đây là cách suy luận của mình khi làm bài trên còn ghi vào giấy thì đừng làm vậy nhé
Chỉ cần ghi : 3x4+11x3-7x2-2x+1 = 3x4 -x3 +12x3 .... v.v => đặt nhân tử chung
Phân tích đa thức C thành tích của hai tam thức bậc hai với hệ số nguyên và các hệ số cao nhất đều mang dấu dương
\(C=x^4-x^3+2x^2-11x-5\)
\(C=x^4-x^3+2x^2-11x-5\)
\(=x^4+x^3+5x^2-2x^3-2x^2-10x-x^2-x-5\)
\(=x^2\left(x^2+x+5\right)-2x\left(x^2+x+5\right)-\left(x^2+x+5\right)\)
\(=\left(x^2+x+5\right)\left(x^2-2x-1\right)\)
Bài này phải dùng phương pháp hệ số bất định (bài này khó)
C có dạng \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)
Đồng nhất với đa thức C thì phải giải 4 cái sau:
\(a+c=-1\left(1\right),ac+b+d=2\left(2\right),ad+bc=-11\left(3\right),bd=-5\left(4\right)\)
Giải (4) trước (vì \(b,d\in Z\)
Rồi thay vào thử tìm a,c (hơi lâu vì bài này trong 4 ước chỉ tìm được duy nhất 1 giá trị của b và d)
Lời giải thích trên hơi khó hiểu đúng ko? Chúc bạn học tốt.