Cho A = 2x^4 + 4; B = x^4 + x^2 + 1.
Tìm giá trị lớn nhất của A-B
Giải nhanh với giải cả cho mk với
Cho biết 2x^2= a^2+b^2+c^2 và a+b=c
CHứng minh 2x^4=a^4+b^4+c^4
\(\left\{\begin{matrix}2x^2=a^2+b^2+c^2\left(1\right)\\a+b=c\left(2\right)\end{matrix}\right.\)
(1)=>\(4x^4=\left(a^4+b^4+c^4\right)+2\left[\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\right]\)(3)
\(A=2\left(ac\right)^2+2\left(ab\right)^2+2\left(bc\right)^2=a^2\left(b^2+c^2\right)+c^2\left(a^2+b^2\right)+b^2\left(a^2+c^2\right)\) (*)
(2)=> \(\left\{\begin{matrix}a^2+b^2=c^2-2ab\\a^2+c^2=b^2+2ac\\b^2+c^2=a^2-2bc\\\end{matrix}\right.\)(4)
Thay (4) vào (*)
\(A=a^2\left(a^2+2bc\right)+c^2\left(c^2-2ab\right)+b^2\left(b^2+2ac\right)=a^4+2a^2bc+c^4-2abc^2+b^4+2ab^2c64\\ \)
\(A=\left(a^4+b^4+c^4\right)+2abc\left(a-c+b\right)=\left(a^4+b^4+c^4\right)+2abc.0=\left(a^4+b^4+c^4\right)\)(3)\(\Leftrightarrow4x^4=\left(a^4+b^4+c^4\right)+\left(a^4+b^4+c^4\right)=2\left(a^4+b^4+c^4\right)\)
\(\Rightarrow2x^4=\left(a^4+b^4+c^4\right)\) => dpcm
Bài 1 : Tìm thương Q và dư R sao cho A= B.Q+R biết ;
a) A = \(x^4+3x^3+2x^2-x-4\) và B = \(x^2-2x+3\)
b) A = \(2x^3-3x^2+6x-4\) và B = \(x^2-x+3\)
c) A = \(2x^4+x^3+3x^2+4x+9\) và B = \(x^2+1\)
d) A = \(2x^3-11x^2+19x-6\) và B = \(x^2-3x+1\)
c) A= \(2x^4-x^3-x^2-x+1\) và B = \(x^2+1\)
Cho A=|2x^4+3x^2+1|-|-2x^4-x^2-1|
cho 2 đa thức: P(x)= x^4-5x^3-1-7x^2=2x-2x^4 Q(x)= 3x^4+6x^2=5x^3=5-2x^4-2x a) thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến
giải giúp mik với
a: P(x)=x^4-2x^4-5x^3-7x^2+2x-1
=-x^4-5x^3-7x^2+2x-1
Q(x)=3x^4-2x^4+5x^3+6x^2-2x+5
=x^4+5x^3+6x^2-2x+5
cho A = [( x+2 /2x-4)-(x+6 /2x+4 )+( 1/ x^2-4)] : 9(x+5) / 2x^2-8
a) rút gọn A
b) tìm x để A= -2
Tìm a để:
a) 10x^2 - 7x + a chia hết cho 2x - 3.
b) 2x^2 + ax - 4 chia hết cho x + 4.
c) x^3 + ax^2 + 5x + 3 chia hết cho x^2 + 2x + 3
Cho A= 3(2x-3)(3x+2)-(2x+4)(4x-3)+9x(4-x). Tim gia tri cua x de A=0
\(A=3\left(2x-3\right)\left(3x+2\right)-\left(2x+4\right)\left(4x-3\right)+9x\left(4-x\right)\)
\(=\left(6x-9\right)\left(3x+2\right)-8x^2+6x-16x+12+36x-9x^2\)
\(=18x^2+12x-27x-18-17x^2+26x+12\)
\(=x^2+11x-6\)
Để A = 0
\(\Leftrightarrow x^2+11x-6=0\)
\(\Leftrightarrow\left(x^2+11x+\frac{121}{4}\right)-\frac{145}{4}=0\)
\(\Leftrightarrow\left(x+\frac{11}{2}\right)^2-\left(\frac{\sqrt{145}}{2}\right)^2=0\)
\(\Leftrightarrow\left(x+\frac{11}{2}-\frac{\sqrt{145}}{2}\right)\left(x+\frac{11}{2}+\frac{\sqrt{145}}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{145}-11}{2}\\x=\frac{-\sqrt{145}-11}{2}\end{matrix}\right.\)
Vậy..................
tìm a sao cho (x^4)+4 chia hết cho (x^2)+2x+a
vậy rút gọn thành vầy:
Tìm số tự nhiên x biết 4x + 3 chia hết cho x - 2
a. Ta có: x + 3 chia hết cho x - 1
=> x - 1 cũng chia hết cho x-1
=> ( x + 3) - ( x - 1) chia hết cho x -1
=> x + 3 -x +1 = 4 chia hết cho x - 1 (đây là fuơng fáp khử x)
=> x - 1 thuộc Ư(4) = {1;2;4} (nếu đề bảo tìm số tự nhiên, còn nếu số nguyên thì thêm -1,-2,-4 nữa)
+ Lập bảng:
X -1 -4 -2 -1 1 2 4
x -3 -1 0 2 3 5
b. Tương tự bài a, chỉ cần biến đổi khác ở bước đầu, các bước sau đều giống:
4x + 3 chia hết 2x - 1
=> 2x - 1 chja hết 2x -1 => 2( 2x - 1) chia hết 2x -1 (nhân thêm để có 4x để bước sau bỏ x)
=> 2(2x - 1) = 4x - 2 chia hết 2x -1 và 4x - 3 chia hết 2x-1
=> ( 4x - 3) - ( 4x - 2) chia hết 2x -1
=> 4x -3 -4x + 2 = 1 chia hết 2x -1
Tương tự các bước sau
Cho 2x-y=2/3(x+y). tính A=x^4+5/y^4+4^4
Xác định các số a , b sao cho
a , 10x^2 - 7x + a chia hết cho 2x -3
b, 2x^2 + ax + 1 : x -3 dư 4
c, x^4 + ax + b chia hết cho x^2 - 4
d,x^4 + ax^2 + b chia hết cho x^2 -x+1