Từ một điểm O tùy ý trong tam giác ABC kẻ OD, OE, OF lần lượt vuông góc với BC; AC và AB. C/minh: \(AE^2+BF^2+CD^2=AF^2+BD^2+CE^2\)
Từ một điểm O tùy ý trong tam giác ABC kẻ OD,OE,OF lần lượt vuông góc với BC,AC và AB.Chứng minh:
AE^2=BF^2+CD^2=AF^2+BD^2+CE^2
Từ một điểm O tùy ý trong tam giác ABC kẻ OD, OE, OF lần lượt vuông góc với BC; AC và AB. C/minh: \(AE^2+BF^2+CD^2=AF^2+BD^2+CE^2\)
Đơn giản thôi:
Vẽ AO, BO, CO
Ta có: \(\hept{\begin{cases}AE^2=AO^2-OE^2\\BF^2=BO^2-OF^2\\CD^2=OC^2-OD^2\end{cases}}\)
Cộng vế theo vế:
Ta có: \(AE^2+BF^2+CD^2=AO^2-OE^2+BO^2-OF^2+OC^2-OD^2\)
Suy ra: \(AE^2+BF^2+CD^2=\left(AO^2-OF^2\right)+\left(BO^2-OD^2\right)+\left(OC^2-OE^2\right)=AF^2+BD^2+CE^2\)
Vậy...............
Từ điểm O tùy ý trong tgABC kẻ OD,OE,OF lần lượt vuông góc với BC,AC và AB.Chứng minh
AE^2+BF^2+CD^2=AF^2+BD^2+CE^2
Cho tam giác ABC vuông tại A, trong tam giác chọn 1 điểm O, từ O kẻ OE vuông góc với AC, OD vuông tóc với BC, OF vuông góc với AB. tìm O sao cho OD^2 + OF^2 + OE^2 đạt giá trị nhỏ nhất
cho tam giác ABC vuông tại A. Từ một điểm O trong tam giác ta vẽ OD vuông góc với BC, OE vuông góc với CA ,OF vuông góc với AB. Hãy xác đình vị trí của O để OD^2 +OE^2 +OF^2 nhỏ nhất
Giúp mình bài này với ạ :)))) Cho tam giác ABC vuông tại A. Từ một điểm O ở trong tam giác, vẽ OD vuông góc BC, OE vuông góc CA, OF vuông góc AB. Hãy xác định vị trí của điểm O để: OD^2 + OE^2 + OF^2 nhỏ nhất.
trên mạng có lần sau đăng nhớ tìm :))))))))))))) dài qá nên ngại gõ
Trên mạng giải kiểu gì ấy bạn :))) k chắc chắn lắm :<
Gọi AH là đường cao; hạ OK vuông góc với AH (K thuộc AH).
Đặt P= OD^2 + OE^2 + OF^2
P= OD^2 + OE^2 + OF^2 = OD^2 +OA^2 = AK^2 + KH^2 + OK^2
---> P ≥ AK^2+KH^2 (dấu = xảy ra khi OK=0)
đặt AK=x; KH=y, AH=h, nhận thấy x+y=h.
Áp dụng (x+y)^2 ≥ 4xy hay [(x+y)^2] /2 ≥ 2xy
P ≥ x^2 +y^2 = (x+y)^2 -2xy =h^2 -2xy ≥ h^2 - [(x+y)^2] /2
P ≥ h^2 - (h^2)/2 = (h^2)/2
Dấu = xảy ra khi đồng thời có OK=0 và x=y, tức khi O là trung điểm của AH
Từ điểm O tùy ý trong tam giác ABC,kẻ OM,ON,OP lần lượt vuông góc với các cạnh BC,CA,AB.CMR: \(AN^2+BP^2+CM^2=AP^2+BM^2+CN^2\)
Từ điểm O tùy ý trong tam giác ABC. Kẻ OM,ON,OP lần lượt vuông góc với các cạnh BC,Ca,AB. Chứng minh rằng:
AN^2 + BP^2 + CM^2 = AP^2 + BM^2+ CN^2.
từ điểm O tùy ý trong tam giác ABC kẻ OA1,OB1,OC1 lần lượt vuông góc với BC,CA,AB.chứng minh rằng : AB1MŨ 2+BC1 MŨ 2+CA1MŨ 2=AC1MŨ 2+BA1MŨ 2+CB1 MŨ 2
cho tam giác ABC vuông tại A. Từ một điểm O ở trong tam giác vẽ OD vuông góc BC, OE vuông góc CA, OF vuông góc AB. Hãy xác định vị trí của O để OD2 + OE2 + OF2 nhỏ nhất.
help me please !
Gọi AH là đường cao; hạ OK vuông góc với AH (K thuộc AH).
Đặt P= OD^2 + OE^2 + OF^2
P= OD^2 + OE^2 + OF^2 = OD^2 +OA^2 = AK^2 + KH^2 + OK^2
---> P ≥ AK^2+KH^2 (dấu = xảy ra khi OK=0)
đặt AK=x; KH=y, AH=h, nhận thấy x+y=h.
Áp dụng (x+y)^2 ≥ 4xy hay [(x+y)^2] /2 ≥ 2xy
P ≥ x^2 +y^2 = (x+y)^2 -2xy =h^2 -2xy ≥ h^2 - [(x+y)^2] /2
P ≥ h^2 - (h^2)/2 = (h^2)/2
Dấu = xảy ra khi đồng thời có OK=0 và x=y, tức khi O là trung điểm của AH