Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
":-
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 6 2023 lúc 21:56

c: Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hbh

=>M là trung điểm của HK

=>H,M,K thẳng hàng

d: BACK là hình thoi

=>M là trung điểm của AK và AK vuông góc BC 

=>A,H,M thẳng hàng

=>ΔABC cân tại A

=>AB=AC

 

3 tháng 6 2023 lúc 9:14

tham khảo
a.Ta có BK//CH(⊥AB),CK//BH(⊥AC)BK//CH(⊥AB),CK//BH(⊥AC)

→BHCK→BHCK là hình bình hành

b.Vì BHCKBHCK là hình bình hành

→HK∩BC→HK∩BC tại trung điểm mỗi đường

Do MM là trung điểm BCBC

→M→M là trung điểm HKHK

→H,M,K→H,M,K thẳng hàng

c.Ta có O,MO,M là trung điểm AK,HKAK,HK

→OM→OM là đường trung bình ΔAHKΔAHK

→OM//AH→OM//AH

Do BD∩CE=H→HBD∩CE=H→H là trực tâm ΔABC→AH⊥BCΔABC→AH⊥BC

→OM⊥BC

Phương Nguyễn 2k7
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 3 2021 lúc 21:23

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{EAC}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)

My Nguyễn
Xem chi tiết
Hồ Thu Phương
Xem chi tiết
Uzumaki Naruto
12 tháng 8 2016 lúc 16:44

Gọi G là giao điểm của BD và CE. Ta có G là trọng tâm của △ABC

Đặt GD=x,GE=y. Khi đó GB=2x,GC=2y.


Áp dụng định lý Pitago cho các tam giác vuông BGE, CGD, ta có:

GE2+GB2=BE2⇒y2+4x2=9 (1)

GD2+GC2=CD2⇒x2+4y2=16 (2)

Từ (1) và (2) ta có: 5(x2+y2)=25

⇒x2+y2=5

Áp dụng định lý Pitago cho tam giác vuông BGC, ta có: 

BC2=GB2+GC2=4x2+4y2=20

Vậy: BC = \(\sqrt[2]{5}\)

Lê Tú
Xem chi tiết
Phùng Hiếu Ngân
Xem chi tiết
Phùng Hiếu Ngân
24 tháng 6 2015 lúc 6:45

Bài 2: Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.] 
Áp dụng định lý pythagore vào tam giác vuông BGE ta có: 
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1) 
Áp dụng định lý pythagore vào tam giác vuông CGD ta có: 
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2) 

mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có: 

BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)  
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=> 
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=> 
BC = 2.(căn 5) cm

 

 

Phạm Huyền Linh
27 tháng 8 2015 lúc 9:36

Vì \(\Delta\)GDC vuông tại G nên theo định lý Py-ta-go ta có

\(DC^2=GD^2+GC^2\)(3)

Từ (1),(2) và (3) ta có 

\(BC^2=EB^2-EG^2+DC^2-GD^2=\left(\frac{AB}{2}\right)^2-EG^2+\left(\frac{AC}{2}\right)^2-GD^2\)

\(\Rightarrow BC^2=\left(\frac{6}{2}\right)^2-EG^2+\left(\frac{8}{2}\right)^2-GD^2=3^2+4^2-\left(EG^2+GD^2\right)=25-\left(EG^2+GD^2\right)\)(4)

Mà ta có ED là đường trung bình của \(\Delta ABC\) nên ta có \(ED=\frac{BC}{2}\)   (5)

Vì \(\Delta EDG\) vuông tại G nên áp dụng định lý Py-ta-go ta có 

\(ED^2=GD^2+EG^2\)  (6)

Từ (4),(5) và (6) ta có 

\(BC^2=25-ED^2=25-\left(\frac{BC}{2}\right)^2=25-\frac{BC^2}{4}=\frac{100-BC^2}{\text{4}}\)

\(\Rightarrow\text{4BC^2}=100-BC^2\)

\(\Leftrightarrow5BC^2=100\)

\(\Leftrightarrow BC^2=20\)

\(\Leftrightarrow BC=\sqrt{20}\)(cm)

Vậy \(BC=\sqrt{20}cm\)

nguyen thi lien anh
2 tháng 5 2016 lúc 21:12

 bn oi nhin no ssao ak

Đặng Trương Kim Khánh
Xem chi tiết
Yumi Vũ
28 tháng 2 2016 lúc 18:10

ta dựa theo định lí ba đường trung tuyến của một tam giác cùng đi qua 1 điểm. Điểm đó cách mỗi đỉnh bằng \(\frac{2}{3}\)độ dài đường trung tuyến.

9*2/3=6

12*2/3=8

vậy ta áp dụng định lí py ta go 

AB^2+AC^2=BC^2

=> 6^2+8^2=100

căn của 100 là 10 

Vậy BC=10

tt7a
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 6 2023 lúc 23:13

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔAEC

=>BD=CE

b: góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: AB=AC

HB=HC

=>AH là trung trực của BC

Lê Thị Kiều
Xem chi tiết
Nguyễn Xuân Sáng
10 tháng 11 2016 lúc 19:14

Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.] 
Áp dụng định lý pythagore vào tam giác vuông BGE ta có: 
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1) 
Áp dụng định lý pythagore vào tam giác vuông CGD ta có: 
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2) 

mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có: 

BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2) 
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=> 
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=> 
BC = 2.(căn 5) cm 

Lê Thị Kiều
10 tháng 11 2016 lúc 19:28

số 9 đâu ra z bn