Tìm x thuộc Z :
\(A=\frac{3n+9}{n-4}\) ; \(B=\frac{6n+5}{2n-1}\)
Bài 3 : Cho A = 3n - 5 / n + 4
Tìm n thuộc Z để A có giá trị nguyên
Bài 4 : Tìm x thuộc Z biết :
a ) -x / 4 = -9 / x
b ) x / 4 = 18 / x + 1
BÀI 3 :
Để \(A=\frac{3n-5}{n+4}\)là giá trị nguyên
\(\Rightarrow3n-5⋮n+4\)
\(\Rightarrow3n+12-17⋮n+4\)
\(\Rightarrow3\left(n+4\right)-17⋮n+4\)
\(\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
\(\Rightarrow n\in\left\{-3;-5;18;-10\right\}\)
1: Cho A = \(\frac{n+3}{n+1}\) tìm n thuộc Z để A thuộc Z
2: Cho b = \(\frac{3n-5}{n-4}\)tìm n thuộc Z để B thuộc Z
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
| n + 1 | -1 | 1 | -2 | 2 |
| n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
| n - 4 | 1 | -1 | 17 | -17 |
| n | 5 | 3 | 21 | -13 |
GIÚP MK VSSSSSSSSSS!!!!!!!!!!!!!!!!
a)tìm x,y thuộc Z biết:\(\frac{x}{2}\)+ \(\frac{y}{3}\) = \(\frac{x+y}{2+3}\)
b) CMR: \(\frac{n^3+2n}{n^4+3n^2+1}\)tối giản
c) tìm n thuộc Z để: \(\frac{n^2+3n-1}{n-2}\) nguyên
Tìm n thuộc Z để các phân số sau có giá trị nguyên
a) A=\(\frac{3n+9}{n-4}\)
b) B=\(\frac{6n+5}{2n-1}\)
Đề A đạt giá trị nguyên
=> 3n + 9 chia hết cho n - 4
3n - 12 + 12 + 9 chia hết cho n - 4
3.(n - 4) + 2c1 chia hết cho n - 4
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
Thay n - 4 vào các giá trị trên như
n - 4 = 1
n - 4 = -1
.......
Ta tìm được các giá trị :
n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}
a) Để A thuộc Z (A nguyên)
=> 3n+9 chia hết cho n-4
hay 3n+9-12+12 chia hết cho n-4 (-12+12=0)
3n-12+9+12 chia hết cho n-4
3n-12+21 chia hết cho n-4
3(n-4)+21 chia hết cho n-4
Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4
mà Ư(21)={21;1;7;3} nên ta có bảng:
| n-4 | 21 | 1 | 3 | 7 |
| n | 25 (tm) | 5 (tm) | 7 (tm) | 11 (tm) |
Vậy n={25;5;7;11} thì A nguyên.
b)
Để B thuộc Z (B nguyên)
=> 6n+5 chia hết cho 2n-1
hay 6n+5-3+3 chia hết cho 2n-1 (-3+3=0)
6n-3+5+3 chia hết cho 2n-1
6n-3+8 chia hết cho 2n-1
3(2n-1)+8 chia hết cho 2n-1
Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1
mà Ư(8)={8;1;2;4} nên ta có bảng:
| 2n-1 | 8 | 1 | 2 | 4 |
| n | 4.5 (ktm) | 1 (tm) | 1.5 (ktm) | 2.5 (ktm) |
Vậy, n=1 thì B nguyên.
1)tìm x thuộc z ,BIẾT:
a) \(\frac{x}{-7}\)=\(\frac{5}{-35}\)
b) \(\frac{x-1}{9}\)=\(\frac{9}{-x}\)
c) \(\frac{-x}{4}\)=\(\frac{9}{-x}\)
d) \(\frac{x}{4}\)=\(\frac{18}{x+1}\)
2)tìm x,y thuộc Z ,biết:
a)\(\frac{x}{7}\)=\(\frac{9}{y}\)và x >y
b)\(\frac{-2}{x}\)=\(\frac{y}{5}\)và x<0<y
3)cho A = \(\frac{3n-5}{n+4}\)
tìm n thuộc Z để A có giá trị nguyên
giúp mình với các bạn , mình sẽ tick cho nhé và sẽ tặng bạn quà
\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1
sao trả lời có một câu mấy dậy bạn giúp mình với
\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x . 5}{- 35} = \frac{5}{- 35}\)
x . 5 = 5
x = 5 : 5
⇒ x = 1
Cho A = \(\frac{6n-2}{3n+1}\); B = \(\frac{2n+1}{3n-1}\)
a ) Tìm n thuộc Z để A thuộc Z ; B thuộc Z
b) Tìm n thuộc Z để A;B lớn nhất ; A;B nhỏ nhất
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
| \(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
| \(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời
tìm n thuộc Z để A,B là các số nguyên.
A=\(\frac{3n+9}{n-4}\); B=\(\frac{6n+5}{2n-1}\)
Cho P = \(\frac{3n-4}{n+2}\)
a) Tìm n để P là phân số
b) Tìm n thuộc Z để P thuộc Z
a,
\(P=\frac{3n-4}{n+2}\) là phân số
<=> n + 2 khác 0
<=> n khác -2
b,
\(P=\frac{3n-4}{n+2}\inℤ\Leftrightarrow3n-4⋮n+2\)
=> 3n + 6 - 10 ⋮ n + 2
=> 3(n + 2) - 10 ⋮ n + 2
3(n + 2) ⋮ n + 2
=> 10 ⋮ n + 2
=> n + 2 thuộc Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}
=> n thuộc {-3; -1; -4; 0; -7; 3; -12; 8}
vậy_
Giải :
a) Để P là phần số thì \(n+2\ne2\) \(\Rightarrow n\ne-2\)
b) Ta có : \(\frac{3n-4}{n+2}=\frac{3.\left(n+2\right)-10}{n+2}=3-\frac{10}{n+2}\)
Để P \(\in\)Z thì 10 \(⋮\)n + 2=> n + 2 \(\in\)Ư(10) = {1; -1; 2; -2; 5; -5; 10; -10}
Lập bảng :
| n + 2 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
| n | -1 | -3 | 0 | -4 | 3 | -7 | 8 | -12 |
Vậy n \(\in\){-1;-3; 0; -4; 3; -7; 8; -12} thì P \(\in\)Z
a) Để P là phân số thì \(n\in Z\)và \(\left(n+2\right)\ne0\) \(\Rightarrow n\ne-2\)
b) Ta có: \(P=\frac{3n-4}{n+2}=\frac{3n+6-10}{n+2}=3-\frac{10}{n+2}\)
Để \(P\in Z\) thì \(\frac{10}{n+2}\in Z\)
\(\Rightarrow10⋮\left(n+2\right)\)
\(\Rightarrow\left(n+2\right)\inƯ\left(10\right)\)
\(\Rightarrow\left(n+2\right)\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
| \(n+2\) | \(-10\) | \(-5\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(5\) | \(10\) |
| \(n\) | \(-12\) | \(-7\) | \(-4\) | \(-3\) | \(-1\) | \(0\) | \(3\) | \(8\) |
Vậy \(n\in\left\{-12;-7;-4;-3;-1;0;3;8\right\}\)
Bài 1 : Chứng minh :
a) (3n+1) . (n-1)-n.(3n+1)+7 chia hết cho 3
.(n+3)-2n+3 chia hết cho 9
Bài 2 : Tìm x , y thuộc Z , để :
a)x.y=-7
b)(x+1).(y+2)=7
c) (x+1).(y+3)-4=3
Bài 3 :Tìm x thuộc Z , để :
a)x-4 chia hết cho x-1
b)3x+2 chia hết cho 2x-1
Bài 5 : Chứng minh : Với mọi a thuộc Z , thì :
a (a-1).(a+2)+12 không là Bội của 9
b)49 không là Ước của (a+2).(a+9)+21
Ai làm nhanh nhất mk cho 5 T.I.C.K