cho ti le thuc: \(\frac{a}{b}=\frac{c}{d}\). CMR; (a+ 2c)(b+d)= (a+ c)(b+2d)
CMR tu ti le thuc \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)khac 1 ta co ti le thuc \(\frac{a}{b}\)=\(\frac{c}{d}\)
TA CÓ A/B=C/D
=A/C=B/D=A-C/B-D=A+C/B+D
=>TỪ TỈ LỆ THỨC A+B/A-B=C+D/C-D TA CÓ THỂ CÓ TỈ LỆ THỨC LA
AA/B=C/D
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)
CMR tu ti le thuc \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)khac 1 ta co ti le thuc \(\frac{a}{b}\)=\(\frac{c}{d}\)
cho ti le thuc\(\frac{a}{b}=\frac{c}{d}\) cmR
\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)va \(\left(\frac{a+b}{c+d}\right)^2\)=\(\frac{a^2-b^2}{c^2-d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)
Ta có: \(\frac{ab}{cd}=\frac{a}{c}\cdot\frac{b}{d}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a^2}{c^2}\)
\(\frac{ab}{cd}=\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)
Từ (1) và (2) => \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}\Rightarrow\frac{ab}{cd}=\left(\frac{a+b}{c+d}\right)^2\left(3\right)\)
Từ (2),(3) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2-b^2}{c^2-d^2}\)
cho ti le thuc \(\frac{a}{b}=\frac{c}{d}\). CMR : \(\frac{4a+6b}{5a-7b}=\frac{4c+6d}{5c-7d}\)
\(\frac{a}{b}\)= \(\frac{c}{d}\)=> \(\frac{a}{c}\)= \(\frac{b}{d}\)= \(\frac{4a}{4c}\)= \(\frac{6b}{6d}\)= \(\frac{4a+6b}{4c+6d}\)
\(\frac{a}{c}\)= \(\frac{b}{d}\)= \(\frac{5a}{5c}\)= \(\frac{7b}{7d}\)= \(\frac{5a-7b}{5c-7d}\)
=> \(\frac{4a+6b}{4c+6d}\)= \(\frac{5a-7b}{5c-7d}\)
=> \(\frac{4a+6b}{5a-7b}\)= \(\frac{4c+6d}{5c-7d}\)
cho ti le thuc \(\frac{a}{b}=\frac{c}{d}\) CMR: \(\frac{7a^2-3ab}{11a^2-8b^2}=\frac{7c^2-3cd}{11c^2-8d^2}\)
cho ti le thuc \(\frac{a}{c}=\frac{a}{d}\)Chung to rang \(\frac{a}{b+c}=\frac{a}{b+d}\)
a/ Cho ti le thuc \(\frac{a}{b}=\frac{c}{d}\)
Chung minh: \(\frac{2a+5b}{3a-7b}=\frac{2c+5d}{3c-7d}\)
b/ Cho ti le thuc: \(\frac{x}{y}=\frac{m}{n}\)
Chung minh; \(\frac{5x+4y}{3x-6y}=\frac{5m+4n}{3m-6n}\)
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(1\right)\)
Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{7b}{7d}=\frac{3a-7b}{3c-7d}\left(2\right)\)
Từ (1) và (2) => \(\frac{2a+5b}{2c+5d}=\frac{3a-7b}{3c-7d}\Rightarrow\frac{2a+5b}{3a-7b}=\frac{2c+5d}{3c-7d}\)
Câu b tương tự
cho ti le thuc \(\frac{a}{b}\)= \(\frac{c}{d}\)
CMR: Ta có các tỉ lệ thức sau:
a) \(\frac{a+b}{b}\)= \(\frac{c+d}{d}\)
b) \(\frac{a+b}{a-b}\) = \(\frac{c+d}{c-d}\) ( a khác b, c khác d )
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
\(a,\Rightarrow\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b\left[k+1\right]}{b}=k+1\)
\(\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left[k+1\right]}{d}=k+1\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(b,\Rightarrow\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left[k+1\right]}{b\left[k-1\right]}=\frac{k+1}{k-1}\)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left[k+1\right]}{d\left[k-1\right]}=\frac{k+1}{k-1}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
cho ti le thuc \(\frac{a}{b}=\frac{c}{d}\) chung minh rang \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
a/b=c/d nên ad=bc
Ta có:
(a+b)(c-d)= ac -ad +bc -bd=ac-bd(1)
(a-b)(c+d)=ac+ad-bc-bd=ac-bd(2)
Từ (1) và (2) suy ra: (a+b)(c-d)=(a-b)(c+d) nên: (a+b)/(a-b)=(c+d)/(c-d)
A/D tỉ lệ thức ta dc :
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(=>\frac{a+b}{c+d}=\frac{a-b}{c-d}=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
đpcm
Gọi giá trị chung của các tỉ số đó là k, ta có :
\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)
Ta có :
\(\frac{a+b}{a-b}=\frac{k\times b+b}{k\times b-b}=\frac{b\times\left(k+1\right)}{b\times\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{k\times d+d}{k\times d-d}=\frac{d\times\left(k+1\right)}{d\times\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)