CHO HÌNH THANG ABCD (AB//CD). MỘT ĐƯỜNG THẲNG SONG SONG VỚI 2 ĐÁY, CẮT AD Ở M, CẮT BC Ở N
A) CM \(\frac{AM}{AD}=\frac{BN}{BC};\frac{MA}{MD}=\frac{NB}{NC}\)
B) CHO BIẾT \(\frac{MD}{MA}=\frac{m}{n}\).CM \(MN=\frac{mAB+nCD}{m+n}\)
CHO HÌNH THANG ABCD (AB//CD). MỘT ĐƯỜNG THẲNG SONG SONG VỚI 2 ĐÁY, CẮT AD Ở M, CẮT BC Ở N
A) CM \(\frac{AM}{AD}=\frac{BN}{BC};\frac{MA}{MD}=\frac{NB}{NC}\)
B) CHO BIẾT \(\frac{MD}{MA}=\frac{m}{n}\).CM \(MN=\frac{mAB+nCD}{m+n}\)
Cho hình thang ABCD(AB//CD).Một đường thẳng song song với 2 đáy cắt cạnh AD,BC theo thứ tự tại M,N.Chứng minh rằng:
a) AM/AD = BN/NC
b) AM/AD + CN/CB =1
a: Xét hình thang ABCD cso MN//AB//DC
nên AM/AD=BN/BC
b: AM/AD+CN/CB=BN/BC+CN/BC=1
Cho hình thang ABCD ( AB // CD), một đường thẳng song song với đáy cắt cạnh bên AD, BC lần lượt ở E và F.
Chứng minh rằng: \(\frac{ED}{AD}=\frac{FC}{BC}\)
bn tham khảo ở đây
https://olm.vn/hoi-dap/tim-kiem?id=248114724967&id_subject=1&q=+++++++++++Cho+h%C3%ACnh+thang+ABCD+(+AB+//+CD),+m%E1%BB%99t+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+song+song+v%E1%BB%9Bi+%C4%91%C3%A1y+c%E1%BA%AFt+c%E1%BA%A1nh+b%C3%AAn+AD,+BC+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+%E1%BB%9F+E+v%C3%A0+F.Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:+EDAD+=FCBC+++++++++++
Câu hỏi của Mori Ran - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo
Tham khảo :
https://olm.vn/hoi-dap/detail/244932172958.html
Cho hình bình hành ABCD có AB// CD . gọi O là Giao điểm của AC và BD , qua O kẻ đường thẳng song song với DC cắt AD ở M cắt BC ở N a, chứng minh AM/ AD = BN / BC. b, từ O kẻ đường thẳng song song với AD và BC cắt DC lần lượt E và F. Chứng minh tứ giác DMOE là hình bình hành và AM/AD = MO/DC. c, chứng minh DE= FC. d, chứng minh 1/AB +1/DC= 2/MN
cho hình thang ABCD (AB//CD). Một đường thẳng song song với hai đáy cắt cạnh bên AD, BC theo thứ tự ở E, F. Chứng minh rằng:
\(\frac{AE}{AD}+\frac{CF}{BC}=1\)
CHO HÌNH THANG ABCD (AB//CD), AC CẮT BD Ở O. (d) LÀ ĐƯỜNG THẲNG ĐI QUA O CẮT AB, CD LẦN LƯỢT TẠI M, N. CHO\(\frac{MA}{MB}=k\). TÍNH ND:NC. (d') LÀ ĐƯỜNG THẲNG QUA O SONG SONG VỚI AB, CẮT AD Ở P, BC Ở Q. CM O LÀ TRUNG ĐIỂM CỦA PQ
Áp dụng hệ quả của định lí Ta-lét,ta có :
\(\Delta AMO\)có NC // AM\(\Rightarrow\frac{NC}{MA}=\frac{ON}{OM}\left(1\right)\)
\(\Delta MBO\)có ND // MB\(\Rightarrow\frac{ND}{MB}=\frac{ON}{OM}\left(2\right)\)
\(\Delta ADB\)có OP // AB\(\Rightarrow\frac{OP}{AB}=\frac{OD}{DB}\left(3\right)\)
\(\Delta ACB\)có OQ // AB\(\Rightarrow\frac{OQ}{AB}=\frac{OC}{AC}\left(4\right)\)
\(\Delta ODC\)có AB // CD\(\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\left(5\right)\)
Từ (1) và (2),ta có\(\frac{NC}{MA}=\frac{ND}{MB}\Rightarrow\frac{NC}{ND}=\frac{MA}{MB}=k\Rightarrow\frac{ND}{NC}=\frac{1}{k}\)
Từ (3),(4) và (5),ta có\(\frac{OP}{AB}=\frac{OQ}{AB}\)=> OP = OQ => O là trung điểm PQ
thông cảm định lí Ta-let mình chưa học tới
Cho hình thang AbCD ( Ab , CD là đáy ) có góc A và D vuông ,cạnh AD , Ab = 50 cm cạnh CD = 60 cm . Trên cạn AD lấy điểm M sao cho DM = 1/4 AM . Qua M kẻ đường thẳng song song với DC cắt bC tại N . tính diện tích hình thang AbMN
Cho hình thang ABCD ( AB//CD) . Một đường thẳng song song với đáy cắt cạnh bên AD,BC lần lượt ở E và F . Chứng minh ED/AD = FC/BC
Kẻ đoạn thẳng AC nối hai điểm A và C. Gọi O là giao điểm của đoạn thẳng AC và đoạn thẳng EF. Theo đề bài, do EF//AB và EF//CD nên áp dụng định lý Talet trong tam giác, ta có:
Xét tam giác ABC:\(\frac{FC}{FB}=\frac{OC}{OA}\)(1)
Xét tam giác ACD:\(\frac{OC}{OA}=\frac{ED}{AD}\)(2)
Từ (1) và (2), suy ra \(\frac{ED}{AD}=\frac{FC}{BC}\)(đpcm)
Gọi giao điểm của AC và EF là O
Xét tam giác ABC có:OF//AB ( EF//AB)
\(\Rightarrow\frac{FC}{BC}=\frac{OC}{AC}\)( định lý Ta-let ) (1)
Xét tam giác ADC có OE//DC ( EF//DC)
\(\Rightarrow\frac{ED}{AD}=\frac{OC}{AC}\)( định lý Ta-let ) (2)
Từ (1) và (2) \(\Rightarrow\frac{FC}{BC}=\frac{ED}{AD}\left(đpcm\right)\)