1không thuc hiên phép tính hay ss :\(\frac{221}{222};\frac{443}{445};\frac{665}{668}\)
2 rut gon \(A=\frac{2+\sqrt{3+\sqrt{5-\sqrt{48}}}}{\sqrt{6}+\sqrt{2}}\)
Không thục hiện phép tính hãy so sánh:
\(\frac{221}{222};\frac{443}{445};\frac{665}{668}\)
221/222>443/445>665/668
chuc ban hoc tot ^-^
\(\frac{221}{222};\frac{443}{445};\frac{665}{668}\)
\(\frac{221}{222}< \frac{443}{445}< \frac{665}{668}\)
.....
Không thực hiện phép tính, hãy so sánh
\(\frac{221}{222},\frac{443}{445},\frac{668}{665}\)
\(\frac{221}{222};\frac{443}{445};\frac{668}{665}\)
\(\frac{221}{222}< \frac{443}{445}< \frac{668}{665}\)
.....
Thực hiên phép tính :
\(\frac{25^3.5^5}{6.5^{10}}\)
= \(\frac{5^6.5^5}{6.5^{10}}\) = \(\frac{5^{11}}{6.5^{10}}\)= \(\frac{5}{6}\)
\(\frac{25^3.5^5}{6.5^{10}}\)=\(\frac{5^{11}}{6.5^{10}}\)=\(\frac{5}{6}\)
ok 100% chính xác
\(\frac{25^3\cdot5^5}{6\cdot5^{10}}=\frac{25^3}{6\cdot5^5}\)
\(\frac{\left(5^2\right)^3}{6\cdot5^5}=\frac{5^6}{6\cdot5^5}=\frac{5}{6}\)
Thực hiên phép tính :
\(\frac{2^5.6^3}{8^2.9^2}\)
\(\frac{2^5.6^3}{8^2.9^2}\) = \(\frac{2^5.2^3.3^3}{2^6.3^4}\) = \(\frac{2^8.3^3}{2^6.3^4}\) = \(\frac{2^2}{3}\) = \(\frac{4}{3}\)
\(=\frac{6912}{5184}=\frac{4}{3}\)
\(\frac{-2}{7}-\frac{3}{5}-\frac{3}{45}-\frac{3}{117}-\frac{3}{221}-\frac{3}{357}\)
tính giá trị của phép tính
thực hiên phép tính
\(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right)\frac{1-3-5-7-...-49}{89}\)
Đặt \(A=\frac{1}{4.9}+\frac{1}{9.14}++\frac{1}{14.19}+......+\frac{1}{44.49}\)
\(A=\frac{1}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+.....+\frac{5}{44.49}\right)\)
\(A=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+.....+\frac{1}{44}-\frac{1}{49}\right)\)
\(A=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{49}\right)=\frac{1}{5}.\frac{45}{196}=\frac{9}{196}\)
Đặt \(B=\frac{1-3-5-7-.......47-49}{89}\)
\(B=\frac{1-\left(3+5+7+......+47+49\right)}{89}\)
Từ 3 -> 49 có: (49-3):2+1=24(số hạng)
=>\(3+5+7+....+47+49=\frac{\left(49+3\right).24}{2}=624\)
=>\(B=\frac{1-624}{89}=\frac{-623}{89}=-7\)
Vậy \(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+....+\frac{1}{44.49}\right).\frac{1-3-5-,,,,,-49}{89}=A.B=\frac{9}{196}.\left(-7\right)=-\frac{9}{28}\)
Thực hiên phép tính sau :
A = \(\frac{125^{100}}{5^{298}}\). \(\frac{2^{160}}{4^{80}}\)
\(A=\frac{125^{100}}{5^{298}}\cdot\frac{2^{160}}{4^{80}}=>A=\frac{\left(5^3\right)^{100}}{5^{298}}\cdot\frac{2^{160}}{\left(2^2\right)^{80}}\)
\(=>A=\frac{5^{300}}{5^{298}}\cdot\frac{2^{160}}{2^{160}}=>A=5^2\cdot1=>A=25\)
\(A=\frac{125^{100}}{5^{298}}.\frac{2^{160}}{4^{80}}\)
\(=\frac{\left(5^3\right)^{100}}{5^{298}}.\frac{2^{160}}{\left(2^2\right)^{80}}\)
\(=\frac{5^{300}}{5^{298}}.\frac{2^{160}}{2^{160}}\)
\(=5^2.1=25\)
Vậy \(A=25\)
\(A=\frac{125^{100}}{5^{298}}.\frac{2^{160}}{4^{80}}=\frac{\left(5^3\right)^{100}}{5^{298}}.\frac{2^{160}}{\left(2^2\right)^{80}}\)
\(=\frac{5^{300}}{5^{298}}.\frac{2^{160}}{2^{160}}\)
\(=5^2.1\)
\(=25\)
Không thực hiện phép tính, hãy so sánh
\(\frac{221}{222},\frac{443}{445},\frac{668}{665}\)
Thực hiện phép tính hợp lí nếu có thể:
\(\frac{221}{240}+\frac{1}{3.8}+\frac{1}{6.12}+\frac{1}{9.16}+.....+\frac{1}{54.76}+\frac{1}{57.80}\)