so sánh \(\frac{2009}{2010}+\frac{2010}{2011}+\frac{2010}{2009}và3\)
So sánh : \(A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}vàB=\frac{2008+2009+2010}{2009+2010+2011}\)
So sánh : A=\(\frac{2008}{2009}\)+\(\frac{2009}{2010}\)+\(\frac{2010}{2011}\)và B=\(\frac{2008+2009+2010}{2009+2010+2011}\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}=\frac{2009}{2009+2010+2011}=\frac{2010}{2009+2010+2011}\)
\(< A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}\)
So sánh A và B biết
A=\(\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
B=\(\frac{2009+2010+2011}{2010+2011+2012}\)
A=2.998508205
B=0.999502735
suy ra A>B
Bài giải
Theo bài ra :
\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
Ta có :
\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)
\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }A>B\)
Bài giải
Theo bài ra :
\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
Ta có :
\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)
\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }A>B\)
M = \(\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}\)
So sánh M với 4
2007/2008<1
2008/2009<1
2009/2010<1
2010<2011<1
=>2007/2008+2008/2009+2009/2010+2010/2011<1+1+1+1
=>2007/2008+2008/2009+2009/2010+2010/2011<4(điều cần chứng minh)
2007/2008 < 1
2008/2009 < 1
2009/2010 < 1
2010/2011 < 1
=> 2007/2008 + 2008/2009 + 2009/2010 + 2010/2011 < 1 + 1 + 1 + 1
=>2007/2008 + 2008/2009 + 2009/2010 + 2010/2011 < 4 ( điều cần chứng minh )
ai tk mình mình tk lại cho
2007/2008+2008/2009+2009/2010+2010/2011<4
So sánh:
A=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)và B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
\(B=\frac{2009^{2010}-2}{2009^{2011}-2}< 1\)
\(\Rightarrow B=\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}\)\(=\frac{2009.\left(2009^{2009}+1\right)}{2009.\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)
Suy ra : \(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2009}+1}{2009^{2010}+1}\) hay \(B< A\)
Vậy \(A>B\)
so sánh A=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
Do 2009\(^{2010}\)-2 < 2009\(^{2011}\)-2 \(\Rightarrow\)B<1
Theo đề bài ta có:
B= \(\frac{2009^{2010}-2}{2009^{2011}-2}\)< \(\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}\)= \(\frac{2009^{2010}+2009}{2009^{2011}+2009}\)= \(\frac{2009.\left(1+2009^{2009}\right)}{2009.\left(1+2009^{2010}\right)}\)= \(\frac{2009^{2009}+1}{2009^{2010}+1}\)= A \(\Rightarrow\)B<A
\(A=\frac{2011x2012}{2011+2012}+\frac{2009x2010}{2009+2010};B=\frac{2011x2011}{2011+2012}+\frac{2009x2009}{2009+2010}\)
hãy so sánh hai biểu thức trên
chắc chắn là A > B
hãy ủng hộ mk bằng một niềm tin nhé
^ _ ^ hihi
là a lớn hơn b
nhé các bạn thân mến.
so sánh \(\frac{-22}{45}\)và\(\frac{-51}{103}\)
so sánh \(\frac{2009^{2009}+1}{2009^{2010}+1}\)và\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
A=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)
B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
so sánh A và B