Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Nguyễn Việt Anh
Xem chi tiết
Dang Hoang Mai Han
Xem chi tiết
Yen Nhi
11 tháng 9 2021 lúc 20:59

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Khách vãng lai đã xóa
N.T.M.D
Xem chi tiết
nguyễn tùng dương
Xem chi tiết
Yuu Shinn
9 tháng 2 2016 lúc 14:51

đặt s(n) = 1! + 2! + ... + n! 
s(1) = 1 và s(3) = 9 là số chính phương. 
s(2) = 3 và s(4) = 33 không là số chính phương. 
Với n ≥ 5 có n! chia hết cho 10 - do trong tích có 2 thừa số là 2 và 5 - nên n! tận cùng bằng 0 
Vậy với n ≥ 5 có s(n) = s(4) + 5! + ... + n! tận cùng bằng 3. Do số chính phương không tận cùng bằng 3 (chỉ tận cùng bằng 0, 1, 4, 5, 6, 9) nên với n ≥ 5 có s(n) không là số chính phương. 
Vậy chỉ với n = 1 và n = 3 tổng đã cho là số chính phương.

Nguồn: yahoo

Bui Chi Dung 1
9 tháng 2 2016 lúc 14:57

n=1 hoac n=3

Nakamori Aoko
Xem chi tiết
Dương Lan Hương
Xem chi tiết
Nguyễn Hồng Mi
Xem chi tiết
Vananh11062001
Xem chi tiết
Phạm Thế Mạnh
4 tháng 1 2016 lúc 22:34

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1=\left(n^2+3n+1\right)^2\)là chính phương
mà \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\) cũng là chính phương 
\(\Leftrightarrow\left(n^2+3n+1\right)^2=0\)
pt vô nghiệm

Vananh11062001
4 tháng 1 2016 lúc 22:32

ok pạn Phạm thế mạnh

Nguyễn Quốc Khánh
4 tháng 1 2016 lúc 22:35

ta có

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\)

\(=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]+2\)

\(\left(n^2+3n\right)\left(n^2+3n+2\right)+2\)

Đặt n^2+3n+1=a

=>(a-1)(a+1)+2=a^2-1+2=a^2+1

=>Sai đề

Nếu thấy câu trả lời của mình đúng thì tick nha bạn,cảm ơn nhiều.

Nguyễn Hoàng Nguyên Bảo
Xem chi tiết
Nguyễn Tuấn Tài
24 tháng 7 2015 lúc 15:13

trên yahoo mình copy ra nè 

đặt s(n) = 1! + 2! + ... + n! 
s(1) = 1 và s(3) = 9 là số chính phương. 
s(2) = 3 và s(4) = 33 không là số chính phương. 
Với n ≥ 5 có n! chia hết cho 10 - do trong tích có 2 thừa số là 2 và 5 - nên n! tận cùng bằng 0 
Vậy với n ≥ 5 có s(n) = s(4) + 5! + ... + n! tận cùng bằng 3. Do số chính phương không tận cùng bằng 3 (chỉ tận cùng bằng 0, 1, 4, 5, 6, 9) nên với n ≥ 5 có s(n) không là số chính phương. 
Vậy chỉ với n = 1 và n = 3 tổng đã cho là số chính phương.

Trần Thúy An
31 tháng 12 2016 lúc 14:53

Mình không biết vi mình cũng đi hỏi bài này mà..sorry.