tìm n thuộc z để 2n-1 chia hết cho n-4
Tìm n thuộc Z để:
a)(2n^2+n—7) chia hết cho (n—2)
b)(10n^2—7n—5) chia hết cho (2n—3)
c)(2n^2+3n+3) chia hết cho (2n—1)
tìm n thuộc N để 4n^2+2 chia hết cho 2n+1
1. Cho n thuộc N . Tìm ƯCLN của
a, 2 số tự nhiên liên tiếp
b, 2n+1 và 3n+1
c, 2n+1 và 6n+5
d, 20n+1 và 15n+2
2. Tìm a,b thuộc N biết a.b =864 và ƯCLN (a,b)=60
3. Tìm n thuộc N để
a, 16-2n chia hết cho n-2
b, 5n-8 chia hết cho 4-n
4.Tìm a,b thuộc N biết a+b=66 , ƯCLN ( a,b ) =6 và 1 trong 2 số đó chia hết cho 5.
5. Biết a,b thuộc N , ƯCLN (a,b) =4 , a=8. Tìm b ( với a < b )
6.Cho a<b , a và b thuộc N ; ƯCLN (a,b) =16 và b =96 .Tìm a.
Tìm n thuộc Z sao cho 2n - 3 chia hết cho n + 1
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1 => 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
TH1: n+1=1 => n=0 thuộc Z
TH2: n+1=-1 => n=-2 thuộc Z
TH3: n+1=5 => n=4 thuộc Z
TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}
Tìm n thuộc z để n^2+7 chia hết cho n+3
Ta có:
n + 3 chia hết cho n + 3
n(n +3) chia hết cho n + 3
n^2 + 3n chia hết cho n + 3
n^2 + 7 chia hết cho n + 3
=> [(n^2 + 3n) - (n^2 + 7)] chia hết cho n + 3
3n - 7 chia hết cho n + 3
n + 3 chia hết cho n + 3
3(n + 3) chia hết cho n + 3
3n + 9 chia hết cho n + 3
=> [(3n + 9) - (3n - 7)] chia hết cho n + 3
16 chia hết cho n + 3
n + 3 thuộc U(16) = {-16 ; -8 ; -4 ; -2 ; -1 ; 1 ; 2; 4 ; 8 ; 16}
n thuộc {-19 ; -11 ; -7 ; -5 ; -4 ; -2 ; -1 ; 1 ; 5 ; 13}
Ta có:
n + 3 chia hết cho n + 3
n(n +3) chia hết cho n + 3
n^2 + 3n chia hết cho n + 3
n^2 + 7 chia hết cho n + 3
=> [(n^2 + 3n) - (n^2 + 7)] chia hết cho n + 3
3n - 7 chia hết cho n + 3
n + 3 chia hết cho n + 3
3(n + 3) chia hết cho n + 3
3n + 9 chia hết cho n + 3
=> [(3n + 9) - (3n - 7)] chia hết cho n + 3
16 chia hết cho n + 3
n + 3 thuộc U(16) = {-16 ; -8 ; -4 ; -2 ; -1 ; 1 ; 2; 4 ; 8 ; 16}
n thuộc {-19 ; -11 ; -7 ; -5 ; -4 ; -2 ; -1 ; 1 ; 5 ; 13}
tìm n thuộc z biết
a , (4n+3) chia hết cho (2n-1) ; b(3n+1) chia hết cho (11 -2n),
1,Cho a>b và S = - ( a-b-c ) +( -c+b+a ) - ( a+ b)
2,Tìm n thuộc Z để:
a,4 chia hết n-2
b,3n- 7 chia hết n-2
1, Cho a>b và S = - ( a - b - c ) + ( -c + b +a ) - ( a + b)
2, Tìm n thuộc Z để:
a, 4 chia hết n-2
b, 3n-7 chia hết n-2
1) S = -(a-b-c)+(-c+b+a)-(a+b)
S=-a+b+c-c+b+a-a-b
S=(a-a)+(b-b)+(c-c)+b+a
S=0+0+0+b+a
S=b+a
2) GIẢI
a) Ta có: 4 chia hết cho n-2:
=>n-2 E Ư(4) = {+-1;+-2;+-4}
Xét 3 trường hợp
Trường hợp 1:
n-2=1
n=3
Trường hợp 2:
n-2=2
n=4
Trường hợp3
n-2=4
n=6
Với trường hợp số âm bạn làm tương tự
b) GIẢI
Ta có 3n-7 chia hết cho n-2
=>3(n-2)-5 chia hết cho n-2
Từ trên ta có được 3(n-2)chia hết cho n-2
=>5chia hết cho n-2
=> n-2 E Ư(5) = {+-1;+-5}
Xét 2 trường hợp:
Trường hợp 1
n-2=1
n=3
trường hợp 2:
n-2=5
n=7
với trường hợp số âm bạn làm tương tự
a,tìm n thuộc z sao cho M=2n-7/n-5 có giá trị nguyên
b,x thuộc z : (3x+2) chia hết cho n-1
a/ \(M=\frac{2n-7}{n-5}=\frac{2n-10+3}{n-5}=\frac{2\left(n-5\right)+3}{n-5}=\frac{2\left(n-5\right)}{n-5}+\frac{3}{n-5}\)
Để \(\frac{2n-7}{n-5}\) có giá trị nguyên thì \(3⋮\left(n-5\right)\)
=> \(n-5\inƯ\left(3\right)=\left(-3;-1;1;3\right)\)
Nếu n - 5 = -3 => n = -3 + 5 => n = 2
Nếu n - 5 = -1 => n = -1 + 5 => n = 4
Nếu n - 5 = 1 => n = 1 + 5 => n = 6
Nếu n - 5 = 3 => n = 3 + 5 => n = 8
Vậy \(n\in\left\{2;4;6;8\right\}\)
\(M=\frac{2n-7}{n-5}=\frac{2\left(n-5\right)-7+10}{n-5}=\frac{2\left(n-5\right)+3}{n-5}=2+\frac{3}{n-5}\)
Với n thuộc Z để M nguyên
\(\Leftrightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{5;4;8;2\right\}\)
Vậy...................................
\(3x+2⋮x-1\Rightarrow3\left(x-1\right)+5⋮x-1\)
\(\Rightarrow5⋮x-1\Rightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{2;0;5;-4\right\}\)
Vậy............................
a, \(\frac{2n-7}{n-5}=\frac{2n-10+3}{n-5}=\frac{2(n-5)+3}{n-5}=2+\frac{3}{n-5}\)
M có giá trị nguyên \(\Leftrightarrow n-5\inƯ(3)\)
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy : ....