giải hệ phương trình:\(\hept{\begin{cases}x^3-2y^3=x+4y\\6x^2-19xy+15y^2=1\end{cases}}\)
Giải hệ phương trình:
a, \(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
b,\(\hept{\begin{cases}x^3-6x^2y+9xy^2-4y^3=0\\\sqrt{x-y}+\sqrt{x+y}=2\end{cases}}\)
a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
ĐK: \(x+y\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)
\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)
\(\Leftrightarrow a^3-ab-a+b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)
Thay (3) vào (2) ta được
\(x^2-y=1\Leftrightarrow y=x^2-1\)
\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)
Giải (4)
Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)
do đó (4) không xảy ra
Vậy..........
Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích?
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\) b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\) c) \(\hept{\begin{cases}4x-4y=2\\-2x+2y=-1\end{cases}}\)
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)
Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm
b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x-4y=2\\6x-4y=0\end{cases}}\)
Hệ này cũng vô nghiệm
c) \(\hept{\begin{cases}4x-4y=2\\-2x+2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-2y=1\\2x-2y=1\end{cases}}\)
Hệ này có vô số nghiệm
giải hệ phương trình bằng phương pháp thế
\(â,\hept{\begin{cases}3x^2+\left(6-y\right)x^2-2xy=0\\x^2-x+y=-3\end{cases}}\)
\(b,\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(c,\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(d,\hept{\begin{cases}x\sqrt{y+1}=1\\x^2y=y-1\end{cases}}\)
Dùng cái đầu đi ạ
giải hệ phương trình :
\(\hept{\begin{cases}x^4+y^2+11=6x^2+4y\\x^2y+x^2=16\end{cases}}\)
Giải hệ phương trình bằng phương pháp cộng
1) \(\hept{\begin{cases}2x+y=5\\3x+5y=4\end{cases}}\)
2) \(\hept{\begin{cases}x-2y=1\\3x+4y=3\end{cases}}\)
3) \(\hept{\begin{cases}x-y=3\\4x+3y=5\end{cases}}\)
4) \(\hept{\begin{cases}4x+3y=2\\2x-2y=1\end{cases}}\)
Giải hệ phương trình\(\hept{\begin{cases}x^3-y^3-15y-14=3\left(2y^2-x\right)\\4x^3+6xy+15x+3=0\end{cases}}\)
Giải hệ phương trình\(\hept{\begin{cases}x^3-y^3-15y-14=3\left(2y^2-x\right)\\4x^3+6xy+15x+3=0\end{cases}}\)
Xét hệ phương trình \(\hept{\begin{cases}x^3-y^3-15y-14=3\left(2y^2-x\right)\left(1\right)\\4x^3+6xy+15x+3=0\left(2\right)\end{cases}}\)
Ta có: \(\left(1\right)\Leftrightarrow x^3+3x=y^3+15y+6y^2+14\)\(\Leftrightarrow x^3+3x=y^3+6y^2+12y+8+3y+6\)
\(\Leftrightarrow x^3+3x=\left(y+2\right)^3+3\left(y+2\right)\Leftrightarrow x=y+2\)(*)
Từ (2) và (*), ta có hệ phương trình: \(\hept{\begin{cases}x=y+2\\4x^3+6xy+15x+3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-2=y\\4x^3+6x\left(x-2\right)+15x+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2=y\\4x^3+6x^2+3x+3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-2=y\\8x^3+12x^2+6x+6=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x+1\right)^3=-5\\x-2=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1-\sqrt[3]{5}}{2}\\y=\frac{-5-\sqrt[3]{5}}{2}\end{cases}}\)
Vậy hệ phương trình có một nghiệm duy nhất là \(\left(x;y\right)=\left(\frac{-1-\sqrt[3]{5}}{2};\frac{-5-\sqrt[3]{5}}{2}\right)\)
giải hệ phương trình\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)
\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)
\(x^3+2y^2-4y+3=0\Leftrightarrow x^2+2\left(y^2-2+1\right)+1=0\Leftrightarrow\left(y-1\right)^2=\frac{-1-x^3}{2}\)
\(\Rightarrow\frac{-1-x^3}{2}\ge0\Leftrightarrow x\ge-1\)
Để có nghiệm thì \(\Delta_y=4-4x^4\ge0\Leftrightarrow-1\le x\le1\)
Kết hợp với trên, ta có: x = -1, thế vào PT ban đầu, tính được y = 1
Vậy hệ của nghiệm là: \(\left(x,y\right)=\left(-1;1\right)\)
Trong OLM,số người học lớp 9 chơi phần mềm này rất ít!!Anh có thể vào Học24h để hỏi,ở đó còn có rất nhiều thầy cô giáo sẽ giúp anh!!
anh nham roi co the bon em se giup ah ma...
em ko cao sieu nhung van giup dc phan nho nho
Giải hệ phương trình:
1.\(\hept{\begin{cases}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{cases}}\)
2.\(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\z+x=\sqrt{4y-1}\end{cases}}\)
3.\(\hept{\begin{cases}\left(x+y\right)\left(x^2-y^2\right)=45\\\left(x-y\right)\left(x^2+y^2\right)=85\end{cases}}\)
4.\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)
5. \(\hept{\begin{cases}2x^3+3x^2y=5\\y^3+6xy^2=7\end{cases}}\)