cho a , b ,c là số tự nhiên khác 0 , chứng tỏ a/(b+c) > b/(a+b+c)
Cho a,b,c là các số tự nhiên khác 0. Chứng tỏ: \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)không phải là số tự nhiên.
Với a,b,c dương, ta có:
a/a+b > a/a+b+c
b/b+c > b/a+b+c
c/c+a > c/a+b+c
=> A > a/a+b+c + b/a+b+c + c/a+b+c => A>1. (1)
Ta lại có
A = a/a+b + b/b+c + c/c+a
= a+b-b/a+b + b+c-c/b+c + c+a-a/c+a
= 1-b/a+b + 1-c/b+c + 1-a/c+a
= 3-(b/a+b + c/b+c + a/c+a) = 3-B
Tương tự phần chứng minh trên, ta có
b/a+b > b/a+b+c
c/b+c > c/a+b+c
a/a+c > a/a+b+c
=> B > b/a+b+c + c/a+b+c + a/a+b+c => B>1
mà A = 3-B
=> A < 2 (2)
Từ (1) và (2) => 1<A<2
Mà không có số tự nhiên nào ở giữa 1 và 2 => A không là số tự nhiên
1. Cho a,b,c,d là các số tự nhiên khác 0 và a/b bé hơn c/d . Chứng tỏ rằng a * d bé hơn b * c.
2. Cho a,b,c là các số tự nhiên khác 0. Chứng tỏ rằng :
a). a/a+b + b/b+c + c/c+a lớn hơn 1
b). b/a+b + c/b+c + a/c+a bé hơn 2
Các bạn nhớ ghi lời giải chi tiết nhé !
Cho a, b, c, d là các số tự nhiên khác 0 và a/b < c/d. Chứng tỏ rằng a × d < b × c
cho a , b ,c là các số tự nhiên khác 0 . chứng tỏ rằng :
a(a+1) + 2024 / bc(b+c)
chưa tối giản
Tử :Vì a là stn khác 0 => trong 2 số a và a+1 có 1 số chẵn => a (a+1) là số chẵn =>a (a+1) + 2024 là số chẵn => a(a+1) + 2024 chia hết cho 2
Mẫu :+)Nếu b+c chẵn thì bc(b+c) chẵn => bc(b+c) chia hết cho 2
+)Nếu b+c lẻ thì trong 2 số b và c có 1 số chẵn và 1 số lẻ=> bc(b+c) chẵn =>bc(b+c) chia hết cho 2
Vì cả tử và mẫu đều chia hết cho 2 => phân số đó chưa tối giản
cho 3 số tự nhiên a,b,c khác 0 chứng tỏ rằng nếu a là bội của b; b là bội của c thì a là bội của c
a là bội của b => a = b.q ( q là số tự nhiên khác 0) (1)
b là bôị của c => b = c.t ( t là số tự nhiên khác 0) (2)
Thay (2) vào (1) ta có: a = c.t.q => a chia hết cho c
=> a là bội của c (đpcm)
Theo đề bài
a=m.b (m là số nguyên)
b=n.c (n số nguyên)
=> a=m.n.c
Do m,n là số nguyên => m.n là số nguyên => a là bội của c
Cho ba số tự nhiên a,b,c khác 0 , Chứng tỏ rằng : Nếu "a" là bội của "b" , "b" là bội của "c" thì "a" là bội của "c"?
a là bội của b
=> a chia hết cho b
=> a = bk
Mà b chia hết cho c
=> b = cq
=> a = bk = cq.k chia hết cho c
=> a chia hết cho c
=> a là bội của c
=> Đpcm
Cho a,b,c là số tự nhiên và a khác 0 .Chứng tỏ rằng:
biểu thức P luôn âm, biết:
P = a . ( b - a ) - b . ( a - c ) - b . c
Cho a,b,c là các số tự nhiên khác 0 và \(a^2+b^2=c^2+d^2\)chứng tỏ rằng a+b+c+d là hợp số
Ta có \(a^2+b^2=c^2+d^2\)
<=> a2 +b2 +c2 +d2 = 2(c2 +d2)\(⋮2\)(1)
Mặt khác (a2 + b2 + c2 +d2) - (a+b+c+d)= a2 -a +b2 - b +c2 -c +d2-d= a(a-1)+b(b-1)+c(c-1)+d(d-1) \(⋮2\)(2)
Từ (1) và (2) suy ra a+b+c+d \(⋮2\)
mà a, b, c, d là các số tự nhiên khác 0 nên a+b+c+d>2. Do đó a+b+c+d là hợp số
Cho a,b,c,m,n,p là các số tự nhiên khác 0 va a+m=b+n=c+p=a+b+c . Chứng tỏ rằng m+n>p;n+p>m;p+m>n.