Cho tam giác ABC cân tại A, góc A = 120độ, BC = 6cm. Đường vuông góc với AB tại A cắt BC ở D. Tính độ dài BD.
Cho tam giác ABC cân tại A, góc A = 120độ, BC = 6cm. Đường vuông góc với AB tại A cắt BC ở D. Tính độ dài BD.
Ta có: \BAC=120, BAD=90 => DAC=30
Vì tam giác ABC cân nên \B=\C
Trong tam giác ABC có
\BAC + \B + \C=180(tổng 3 góc trong tam giác)
=> \B + \C=60
Mà: \B=C =>: \B= \C=30
Trong tam giác ADC có: \DAC=\C nên tam giáccân tại \D
=> AD=CD
Vì tam giác ABD là nửa tam giác đều
=> AD= \(\frac{1}{2}\)BD
Mà BD=DC => DC=\(\frac{1}{2}\)BD
Ta có BD+DC=BC
Mà DC=\(\frac{1}{2}\)BD
Thì ta dễ dàng suy ra được BD=4,còn DC=2
Vậy BD=4
Tick đúng cho mink nha!!
cho tam giác ABC cân tại A có góc A=120 độ và Vc =6cm .Đường vuông góc với AB tại A cắt BC ở D tính độ dài BD
Cho tam giác ABC cân tại A có A=120độ,BC=15cm.Đường vuông góc với AB tại A cắt BC ở D.
a,Chứng minh:DA=DC
b,Tính độ dài BD
1 . Cho tam giác ABC cân tại A , góc A = \(120^o\) , BC= 6cm . Đường vuông góc với AB tại A cắt BC ở D . Tính độ dài BD
2 . Cho tam giác ABC vuông cân tại A , đường trung tuyến AM . Trên BC lấy E , kẻ BH vuông góc với AE tại H , kẻ CK vuông góc với AE tại K . Chứng minh tam giác MHK vuông cân
Kẻ đường cao AH ; Vì \(\Delta\)ABC cân
=> H là trung điểm BC
Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)
=> ^ABH = ^ACH = 30\(^o\)
=> ^BAH = 60 \(^o\)
Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'
=> \(\Delta\)ABA' cân tại B mà ^BAA' = ^BAH = 60\(^o\)
=> \(\Delta\)ABA' đều .
Đặt: AB = x => AA' = x => AH = x/2
+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)= \(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)
=> \(BH=\frac{\sqrt{3}x}{2}\)
=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)
( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))
=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)
+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH = 30 \(^o\)=> ^ADB = 60\(^o\)
=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\)
Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)
=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)
+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)
=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)
=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)
=> \(BD=BC-DC=6-2=4cm\)
Cho tam giác ABC cân tại A. A= 120*, BC=6cm, đường vuông góc vs AB tại A, cắt BC ở D. Tính độ dài BD
làm nhanh và đúng có tíck
Ta có: BAC = 120 độ ; CAD = 90 độ => DAB = 30 độ.
Vì tam giác ABC cân nên B = C
Trong tam giác ABC có:
BAC + B + C = 180 độ(tổng 3 góc trong tam giác)
=> B + C= 60 độ
Mà: B = C => B = C = 30 độ
Trong tam giác ADC có: DAB = B =>Tam giác ADB là tam giác cân tại D => AD = BD.
Vì tam giác ACD vuông mà B = 30 => AD = \(\frac{1}{2}\)DC.
Mà: AD = BD => BD = \(\frac{1}{2}\)DC.
Ta lại có: BD + DC = BC => BD = \(\frac{1}{3}\)BC
=> BD = \(\frac{1}{3}\) x 6 = 2(cm)
Vậy BD = 2 cm
(Mình vì nếu viết kí hiệu góc thì rất lâu nên mình dùng luôn dấu gạch ngang trên đầu của góc nha bạn)
Cho tam giác ABC cân tại A có góc A = 120 độ, BC = 6cm. Đường thẳng vuộng góc với AB tại A cắt BC ở D. độ dài đoạn thẳng BD là ?
ta có \(\Delta ABC\)cân có \(\widehat{BAC}=120^o\)\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{\left(180^O-120^O\right)}{2}=30^O\)
LẠI CÓ : \(\widehat{BAD}=90^O\)( đường thẳng vuông góc với AB cắt BC tại D)
XÉT \(\Delta ABD\)CÓ tổng 3 góc trong tam giác bằng 180o
=> \(\widehat{ADB}=180^o-\widehat{DAB}-\widehat{ABD}=180^O-90^O-30^O=60^O\)
Nhận thấy \(\widehat{ADB}=2\widehat{ACB}\)
mà D nằm giữa A và C => BC=2 BD
MÀ BC = 6cm => BD = 3cm
Ta có : BAC bằng 120 độ , CAD = 90 độ
=> DAB = 30 độ
Trong tam giác ABC có :
BAC + B + C = 180 độ tổng 3 góc trong tam giác
=> B + C = 60 độ
Trong tam giác ABD có :
DAB = B => AD = 1/2 DC
Mà AD = BD = BC
=> BD = 1/3 BC
=> BC = 1/3 x 6 = 2 ( cm )
Vậy BD = 2 cm.
Tam giác ABC cân tại A, góc A là 120 độ, BC=6cm. Đường vuông góc với AB tại A giao BC ở D. Tính BD?
Cho tam giác ABC cân tại A có góc A = 120 độ ; BC = 15 cm. Đường vuông góc với AB tại A cắt BC ở D
a, C/minh: DA = DC
b, Tính độ dài BD
a,xét 2 tam giác ABD và ACD,có
AB=AC (tam giác ABC cân)
góc BAD=góc CAD (AD là tia phân giác của góc BAC)
AD:cạnh chung
=>tam giác ABD=tam giác ACD(c.g.c0
=>DA=DC(2 cạnh tương ứng) (đpcm)
b,ta có:DB=DC(câu a)
mà BC=15 cm
=>DB=DC=BC/2=15/2=7.5cm
đúng thì chọn đúng hộ mình nhe
Cho tam giác ABC cân tại A , góc A = 120 độ , BC = 6 cm. Đương vuông góc vs AB tại A cắt BC ở D. Tính độ dài BD
Ta có:
góc BAC = 120; BAD = 90 => DAC = 30
Vì tg ABC cân nên góc B = C
Trong tg ABC có: góc BAC + B + C =180 => Góc B + C = 60
Mà góc B = C ( tg ABC cân ) => góc B = C = 30
Trong tg ADC có: góc DAC = C => cân tại D => AD = CD
Vì tg ABD có góc B = 30 độ => AD = \(\frac{1}{2}\)BD
Mà AD = DC => DC = \(\frac{1}{2}\)BD (1)
Ta lại có: BD + DC = 6 (2)
Từ (1) và (2) => BD =4; DC = 2
k đúng nha!