Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Ngoc Minh Ha
Xem chi tiết
Phù thủy lạnh lùng
Xem chi tiết
Nguyệt
24 tháng 12 2018 lúc 16:40

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

Phù thủy lạnh lùng
24 tháng 12 2018 lúc 16:46

cảm ơn nhiều

Đỗ Thanh Huyền
Xem chi tiết
Nguyễn Minh Hiển
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
kim chi nguyen
Xem chi tiết
Edogawa Conan
Xem chi tiết
Nguyễn Minh Đăng
24 tháng 10 2020 lúc 13:51

Ta có: \(\frac{1}{\left(3x+1\right)\left(y+z\right)+x}=\frac{1}{3x\left(y+z\right)+x+y+z}\le\frac{1}{3x\left(y+z\right)+3\sqrt[3]{xyz}}\)

\(=\frac{1}{3x\left(y+z\right)+3\sqrt[3]{1}}=\frac{1}{3x\left(y+z\right)+3}=\frac{1}{3\left(xy+zx+1\right)}=\frac{1}{3}\cdot\frac{1}{\frac{1}{y}+\frac{1}{z}+1}\)

Tương tự ta chứng minh được:

\(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\) ; \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{x}+\frac{1}{y}+1}\)

Cộng vế 3 BĐT trên lại:

\(A\le\frac{1}{3}\cdot\left(\frac{1}{\frac{1}{x}+\frac{1}{y}+1}+\frac{1}{\frac{1}{y}+\frac{1}{z}+1}+\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\right)\)

\(\Leftrightarrow3A\le\frac{1}{\left(\frac{1}{\sqrt[3]{x}}\right)^3+\left(\frac{1}{\sqrt[3]{y}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{y}}\right)^3+\left(\frac{1}{\sqrt[3]{z}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{z}}\right)^3+\left(\frac{1}{\sqrt[3]{x}}\right)^3+1}\)

Đặt \(\left(\frac{1}{\sqrt[3]{x}};\frac{1}{\sqrt[3]{y}};\frac{1}{\sqrt[3]{z}}\right)=\left(a;b;c\right)\) khi đó:

\(3A\le\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)

\(=\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)+1}+\frac{1}{\left(b+c\right)\left(b^2-bc+c^2\right)+1}+\frac{1}{\left(c+a\right)\left(c^2-ca+a^2\right)+1}\)

\(\le\frac{1}{\left(a+b\right)\left(2ab-ab\right)+1}+\frac{1}{\left(b+c\right)\left(2bc-bc\right)+1}+\frac{1}{\left(c+a\right)\left(2ca-ca\right)+1}\)

\(=\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)

\(=\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)

\(=\frac{c}{a+b+c}+\frac{a}{b+c+a}+\frac{b}{c+a+b}\)

\(=\frac{a+b+c}{a+b+c}=1\)

Dấu "=" xảy ra khi: \(a=b=c\Leftrightarrow x=y=z=1\)

Vậy Max(A) = 1 khi x = y = z = 1

Khách vãng lai đã xóa
Inequalities
25 tháng 10 2020 lúc 8:07

Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa
Dung Nguyen
Xem chi tiết
Rin Trương
22 tháng 10 2018 lúc 16:05

Từ\(\frac{y+z-x}{x}\)=\(\frac{z+x-y}{y}\)\(\frac{x+y-z}{z}\)\(\Rightarrow\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}\) ( t/c dãy tỉ số bằng nhau)

                                                                                      \(\Rightarrow\frac{x+y+z}{x+y+z}=1\)

Khi đó: B=\(\left(1+\frac{x}{y}\right)=\left(1+\frac{y}{z}\right)=\left(1+\frac{z}{x}\right)\) \(\Rightarrow\frac{y+x}{y}=\frac{z+y}{z}=\frac{x+z}{x}\) ( Quy đồng từng phân thức)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{y+x+z+y+x+z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}\)

                                                                                                                        \(=x+y+z\) 

                                                                                                                          \(=1\)

Vậy B =1 

ミ★Zero ❄ ( Hoàng Nhật )
Xem chi tiết

Áp dụng tính chất dãy tỉ số bằng nhau, ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\)

\(=\frac{x+y+z}{x+y+z}=1\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)

\(\Rightarrow x=y=z\)

\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(=2.2.2=8\)

Khách vãng lai đã xóa
Song Thương
18 tháng 4 2021 lúc 21:37

Áp dụng tính chất dãy tỉ số bằng nhau , ta có

     y + z - x / x = z + x - y / y = x + y - z / z = y + z - x + z +x - y + x + y - z / x + y + z = x + y + z / x + y + z

TH1 : x + y + z = 0

       => x + y = - z ; y + z = - x và x + z = -y

Ta có : B = ( 1 + x / y ) ( 1 + y / z ) ( 1 + z / x )

               = ( x + y / y ) ( z + y / z ) ( x + z / x )        ( 1 )

               = - z / y . ( - x / z ) ( -y / x )

              = - 1

TH2 : x + y + z khác 0

Do đó y + z - x / x = z + x - y / y = x + y - z / z = x + y + z / x + y + z = 1

thì y + z - x / x = 1         => y + z - x = x                 => y + z = 2x        ( 2 )

     z + x - y / y = 1              z + x - y = y                      z + x = 2y         ( 3 )

     x + y - z / z = 1              x + y - z = z                      x + y = 2z         ( 4 )

Thay ( 2 ) , ( 3 ) , ( 4 ) vào ( 1 ) ta có 

       B = 2x/y . 2y / z . 2z / x

          = 2 . 2 . 2 = 8

Vậy B = - 1 khi x + y + z = 0

       B = 8 khi x + y + z khác 0

[ xin lỗi nha , tại mình không biết viết phân số ]

Khách vãng lai đã xóa
Song Thương
18 tháng 4 2021 lúc 21:40

vũ cao minh sai rồi nhé , mình đi thi cái này và làm rất nhiều rồi

Thứ nhất : bạn quên xét trường hợp x + y + z = 0

Thứ hai : không có căn cứ gì để cho x = y = z

Khách vãng lai đã xóa