Cho a,b € Z thỏa mãn a^2+b^2 chia hết cho 3 . C/M a và b chia hết cho 3
1. Cho a,b,c thuộc N* thỏa mãn a^2+b^2+c^2 chia hết a+b+c. Chứng minh rằng tồn tại vô hạn n sao cho a^n+b^n+c^n chia hết a+b+c
2. Cho x,y,z thuộc R thỏa x^2+2y^2+5z^2=1. Tìm min,max M=xy+yz+xz
3.Cho a,b,c>0. Chứng minh (a^3+b^3+c^3)^2 < (a^2+b^2+c^2)^3
Điền chữ số vào dấu * để thỏa mãn điều kiện a)chia hết cho 2 b)chia hết cho 3 c)chia hết cho 5 d) chia hết cho 9 e) chia hết cho 2 và 5 g)chia hết cho 3 và 9 h ) chia hết cho 2 và chia cho 5 dư 3 i) chia cho 3 dư 2 m) chia cho 9 dư 1
cho a,b,c,d thuộc Z thỏa mãn a^3+b^3=2(c^3-8d^3). chứng minh rằng a+b+c+d chia hết cho 3
CMR: Nếu a,b,c thuộc Z thỏa mãn a^2 + b^2 = c^2 thì abc chia hết cho 3
2.Cho biểu thức P=(a+b+c).(a.b+b.b+a.c)-2.a.b (với a;b;c thuộc Z).Chứng minh nếu a+b+c chia hết cho 4 thì P chia hết cho 4
3. Cho 3 số nguyên a;b;c thỏa mãn a^2+b^2=c^2.Chứng minh :
Câu a:a.b.c chia hết cho 3
Câu b:a.b.c chia hết cho 12
4.Cho p là số nguyên tố >7.Chứng minh 3^p-2^p-1 chia hết cho 42.p
5.Chứng minh với mọi STN thì n^3-n+2 không chia hết cho 6
Cho a,b là các số nguyên thỏa mãn (a^2+b^2) chia hết cho 3.Chứng minh rằng a và b cùng chia hết cho 3
Ta có a^2 luôn chia 3 dư 1 hoặc 0 b^2 luôn chia 3 dư 1
=> a^2 + b^2 chia 3 dư 2 hoặc 0 mà theo đề bài a^2 + b^2 chia hết cho 3 nên a^2 chia hết cho 3 và b^2 chia hết cho 3
=> a,b đều chia hết cho 3
Vì số chính phương chia 3 dư 1 hoặc 0
Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là
(0;0) (0;1) (1;0) (1;1)
Vì a2+b2chia hết 3 nên ta nhận cặp (0;0) => a,b đều chia hết 3
k mình nhé
cho a,b,c,d thuộc Z thỏa mãn :
a^3+b^3=2(c^3-8d^3)
Chứng minh a+b+c+d chia hết cho 3
Cho a,b,c,d thuộc Z thỏa mãn
a;a^3+b^3=6(c^3-11d^3)
Chứng minh a+b+c+d chia hết cho 6
b,a^2+b^2=c^2+d^2
Chứng minh a+b+c+d chia hết cho 2
giúp mình nha mai mình thi rồi
\(b,a^2+b^2=c^2+d^2\)
\(\Rightarrow a^2+b^2+c^2+d^2=2c^2+2d^2⋮2\)
Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)\)
Ta có \(a^2-a=\left(a-1\right)a⋮2\)(vì tích của 2 số nguyên liên tiếp)
Tương tự ta có \(\left(b^2-b\right)⋮2;\left(c^2-c\right)⋮2;\left(d^2-d\right)⋮2\)
\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)⋮2\)
\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)⋮2\)
mà \(a^2+b^2+c^2+d^2⋮2\)nên \(a+b+c+d⋮2\)
Câu a để nghĩ tiếp
a) Tìm n có 4 chữ số sao cho n chia cho 131 dư 112, n:132 dư 98
b)Tìm UCLN(2n-1,9n-4)
c)cho a,b thuộc Z, thỏa mãn a2+b2 chia hết cho 3
CMR a,b chia hết cho 3