Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Anh Thư
Xem chi tiết
Tuyết Nhi channel
Xem chi tiết
Quách Trung Kiên
Xem chi tiết
Phạm Quang Thái
Xem chi tiết
Phạm Thị Khánh An
21 tháng 1 2019 lúc 19:25

\(A=2018+2\left(x^2+1\right)^{2018}\)

Để A lớn nhất => 2(x2+1)2018 nhỏ nhất \(\left(1\right)\)

Ta thấy: 

\(2\left(x^2+1\right)^{2018}\ge0\)\(\left(2\right)\)

Từ (1); (2)\(\Rightarrow\left(x^2+1\right)^{2018}=0\) \(\Rightarrow x^2+1=0\)

\(\Rightarrow x^2=-1\)(LOẠI)

Nếu (x2 + 1)2018 = 1

\(\Rightarrow\orbr{\begin{cases}x^2+1=1\\x^2+1=-1\left(L\right)\end{cases}}\)

\(\Leftrightarrow x=0\)(TM)

\(\Rightarrow A=2018-2.1=2016\)

Vậy GTLN của A là 2016 tại x = 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 1 2018 lúc 13:45

Đáp án: a= 2017

Hiền Nguyễn Thị
Xem chi tiết
Phùng Minh Quân
18 tháng 4 2018 lúc 20:40

Ta có : 

\(\left(x-1\right)^2\ge0\)

\(\Rightarrow\)\(2018-\left(x-1\right)^2\le2018\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)^2=1\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)

Vậy GTLN của biểu thức \(2018-\left(x-1\right)^2\) là \(2018\) khi \(x=0\) hoặc \(x=2\)

Chúc bạn học tốt ~ 

Phùng Minh Quân
18 tháng 4 2018 lúc 20:36

Ta có : 

\(\left|x-5\right|\ge5\)

\(\Rightarrow\)\(\left|x-5\right|+120\ge120\)

Dấu "=" xảy ra khi và chỉ khi \(\left|x-5\right|=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\)

Vậy GTNN của biểu thức \(\left|x-5\right|+120\) là \(120\) khi \(x=5\)

Chúc bạn học tốt ~ 

umi
Xem chi tiết
Trần Thanh Phương
7 tháng 8 2018 lúc 16:33

Ta có | x + 1 | \(\ge\)\(\forall\)x

=> 5 . | x + 1 | \(\ge\)\(\forall\)x

=> 2018 + 5 . | x + 1 | \(\ge\)2018 \(\forall\)x

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy, GTNN của A = 2018 khi và chỉ khi x = -1

Dorami Chan
7 tháng 8 2018 lúc 16:35

ta có :|x+1| >=0

  =>  5|x+1|>=0

=>  2018+5|x+1|>= 2018

dấu = xảy ra khi  |x+1|=0

                          x+1=0

                          x=-1

 vay gtnn cua bieu thuc tren la 2018  khi x=-1

Khánh Phạm
Xem chi tiết
Kị tử thần
Xem chi tiết
olm (admin@gmail.com)
1 tháng 10 2019 lúc 20:22

\(A=2018+3x-x^2=-\left(x^2-3x-2018\right)\)

\(=-\left(x^2-3x+\frac{9}{4}-\frac{8081}{4}\right)\)

\(=-\left[\left(x-\frac{3}{2}\right)^2-\frac{8081}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{8081}{4}\le\frac{8081}{4}\)

Vậy\(A_{max}=\frac{8081}{4}\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Kị tử thần
1 tháng 10 2019 lúc 20:31

cảm ăn ân nhân cứu giúp cho tấm thân kém cỏi này