Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Inequalities
27 tháng 10 2020 lúc 19:41

Câu hỏi của Lê Tài Bảo Châu - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa
Tuấn
Xem chi tiết
Rau
6 tháng 7 2017 lúc 8:36

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right).\\ \)
\(=3\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right) \\ \)
\(abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)=12\left(ab+bc+ca\right)-8abc-18\left(a+b+c\right)+27\\ \)
\(4abc\ge\frac{4}{9}\left(12\left(ab+bc+ca\right)-27\right)=\frac{16}{3}\left(ab+bc+ca\right)-12\)
\(a^3+b^3+c^3+abc\ge3\left(a^2+b^2+c^2\right)+\frac{7}{3}\left(ab+bc+ca\right)-12 =\frac{11}{6}\left(a^2+b^2+c^2\right)-\frac{3}{2}\ge4\\ \)

Vũ Hoàng Thiên Long
Xem chi tiết
Trần Thị Diễm Quỳnh
6 tháng 12 2015 lúc 20:25

1/xy+1/xz>=1

<=> 1/x(1/y+1/z) >=1

<=>1/y+1/z>=x=4-y-z

<=>1/y+y+1/z+z>=4

<=>(1/y+y)+(1/z+z)>=4 (dễ nhá,tự cm đc chứ j)        

        >=2       >=2

Hà Trần
Xem chi tiết
Họ Và Tên
Xem chi tiết
Kiệt Nguyễn
27 tháng 10 2020 lúc 19:48

Theo điều kiện giả thiết, ta có:\(\sqrt{3}\ge x+y+z\Rightarrow3\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le1\)\(\Rightarrow VT\le\frac{x}{\sqrt{x^2+xy+yz+zx}}+\frac{y}{\sqrt{y^2+xy+yz+zx}}+\frac{z}{\sqrt{z^2+xy+yz+zx}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+x}.\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\)\(\le\frac{\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Khách vãng lai đã xóa
Khương Vũ Phương Anh
Xem chi tiết
trần thành đạt
26 tháng 2 2018 lúc 23:14

\(Q\ge2\left(x+y+z\right)+3.\frac{9}{x+y+z}=2\left(x+y+z\right)+\frac{27}{x+y+z}.\)

Đặt X+Y+Z=t (\(t\le1\))

\(Q\ge2t+\frac{27}{t}=\left(2t+\frac{2}{t}\right)+\frac{25}{t}\ge2\sqrt{2t.\frac{2}{t}}+\frac{25}{1}=4+25=29\\ \)

Dấu = xảy ra khi x=y=z=1/3

Hiếu
26 tháng 2 2018 lúc 22:00

Theo bđt cô si ta có : \(x+y+z\ge3\sqrt[3]{xyz}\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)

=> \(Q\ge6\sqrt[3]{xyz}+9\sqrt[3]{\frac{1}{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}\cdot9\sqrt[3]{\frac{1}{xyz}}}=6\sqrt{6}\)

Dấu = xảy ra khi : \(6\sqrt[3]{xyz}=9\sqrt[3]{\frac{1}{xyz}}\) Giải ra ta đc : \(xyz=\frac{3}{2}\sqrt{\frac{3}{2}}\)

trần thành đạt
26 tháng 2 2018 lúc 23:07

bạn hiếu làm sai rồi, Min Q=29 khi x=y=z=1/3

Lê Đức Anh
Xem chi tiết
HD Film
17 tháng 10 2019 lúc 21:35

\(\frac{x}{x+yz}+\frac{y}{y+zx}+\frac{z}{z+xy}=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)

\(=\text{Σ}\frac{x}{\left(x+y\right)\left(x+z\right)}=\frac{2\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)(1)

+) CM bổ đề (cái này khá hữu dụng): \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}\cdot3\sqrt[3]{x^2y^2z^2}=9xyz\Leftrightarrow\frac{1}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\ge xyz\)

Có \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(x+y+z\right)\left(xy+yz+xz\right)-xyz\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)

Thay vào (1)-> DPCM

Dấu = xảy ra khi x=y=z=1/3

Lê Đức Anh
17 tháng 10 2019 lúc 21:52

Thx HD film