Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duy Nguyen
Xem chi tiết
Vũ Hồng Vân
Xem chi tiết
Hoàng Kim Anh
Xem chi tiết
Lê Trần Bảo Ngọc
Xem chi tiết
Nguyễn Thị Nhàn
Xem chi tiết
Phan Thanh Tịnh
1 tháng 3 2017 lúc 22:39

A B C D H B' E 1 1 2 3 1 1

\(\Delta BEH\)có BE = BH\(\Rightarrow\Delta BEH\)cân tại B\(\Rightarrow\widehat{E}=\widehat{H_1}\)

\(\widehat{B_1}\)là góc ngoài của\(\Delta BEH\Rightarrow\widehat{B_1}=\widehat{E}+\widehat{H_1}\Rightarrow2\widehat{C}=2\widehat{H_1}\Rightarrow\widehat{C}=\widehat{H_1}\)\(\widehat{H_1}=\widehat{H_2}\)(đối đỉnh)\(\Rightarrow\widehat{H_2}=\widehat{C}\)

\(\Rightarrow\Delta HDC\)cân tại D

\(\Delta AHC\)vuông tại H có\(\widehat{HAC}+\widehat{C}=90^0\)\(\widehat{H_2}+\widehat{H_3}=\widehat{AHC}=90^0;\widehat{H_2}=\widehat{C}\Rightarrow\widehat{HAC}=\widehat{H_3}\)

\(\Rightarrow\Delta ADH\)cân tại D

b)\(\Delta AHB,\Delta AHB'\)vuông tại H có AH chung ; HB = HB' (H là trung điểm BB')\(\Rightarrow\Delta AHB=\Delta AHB'\left(2cgv\right)\)

\(\Rightarrow\widehat{B_1}=\widehat{B'_1}\)(2 góc tương ứng)\(\Rightarrow\Delta ABB'\)cân tại A

c)\(\widehat{B'_1}\)là góc ngoài\(\Delta AB'C\)nên\(\widehat{B'_1}=\widehat{A_1}+\widehat{C}\Rightarrow\widehat{A_1}=\widehat{B'_1}-\widehat{C}=\widehat{B_1}-\widehat{C}=2\widehat{C}-\widehat{C}=\widehat{C}\)

\(\Rightarrow\Delta AB'C\)cân tại B' => B'C = AB' = AB (\(\Delta ABB'\)cân tại A) mà HB' = BH = BE

=> B'C + HB' = AB + BE hay HC = AE

Vũ Như Mai
1 tháng 3 2017 lúc 17:01

Bạn vẽ cái hình đi bạn :(

Nguyen Hoang Minh
Xem chi tiết
Nguyễn Văn Du
Xem chi tiết
khiem dinh xuan
Xem chi tiết
Thieu Gia Ho Hoang
13 tháng 2 2016 lúc 8:49

mới hok lop 6

Mok
Xem chi tiết