Cho tam giác ABC M là điểm nằm trong tam giác sao cho diện tích tam giác ABM bằng diện tích tam giác ACM. Hỏi M trên dường nào
Cho tam giác ABC có diện tích 90 cm vuông gọi M nằm trên BC sao cho MB bằng MC. N nằm trên AC sao cho AC bằng 3 x AN . Tính diện tích tam giác ABM , tam giác ACM , tam giác AMN
Cho tam giác ABC,M là điểm nằm trên cạnh AC sao cho AN=2/3 NC. BIết diện tích tam giác ABM bằng 30cm2. Tính
A) diện tích tam giác ABC
B) Diện tích tam giác ABN
Gợi ý:
A) Diện tích tam giác ABC
Gọi S là diện tích tam giác ABC, h là độ cao của tam giác ABC kẻ từ đỉnh B xuống AC. Theo định lý diện tích tam giác, ta có: S = (1/2)AC.h Theo giả thiết, ta có: AN = (2/3)NC, suy ra AC = AN + NC = (2/3)NC + NC = (5/3)NC Do đó, S = (1/2).(5/3)NC.h = (5/6)NC.h Gọi S1 là diện tích tam giác ABM, h1 là độ cao của tam giác ABM kẻ từ đỉnh B xuống AM. Theo định lý diện tích tam giác, ta có: S1 = (1/2)AM.h1 Theo giả thiết, ta có: S1 = 30cm2 Do M là điểm nằm trên AC, nên AM = AN + NM = (2/3)NC + NM Do đó, S1 = (1/2).[(2/3)NC + NM].h1 = 30cm2 Ta có hai phương trình với hai ẩn số NC và h1, ta có thể giải hệ phương trình này để tìm được NC và h1. Sau khi tìm được NC và h1, ta có thể thay vào công thức S = (5/6)NC.h để tính được diện tích tam giác ABC.B) Diện tích tam giác ABN
Gọi S2 là diện tích tam giác ABN, h2 là độ cao của tam giác ABN kẻ từ đỉnh B xuống AN. Theo định lý diện tích tam giác, ta có: S2 = (1/2)AN.h2 Theo giả thiết, ta có: AN = (2/3)NC Do đó, S2 = (1/2).(2/3)NC.h2 = (1/3)NC.h2 Ta có thể sử dụng quan hệ giữa các độ cao của tam giác ABC, ABM và ABN để tìm được h2 theo h1. Sau khi tìm được h2, ta có thể thay vào công thức S2 = (1/3)NC.h2 để tính được diện tích tam giác ABN.Cho tam giác ABC . Trên cạnh BC lấy điểm M sao cho MC = 2/3 . So sanh
A) Diện tích tam giác ACM ...... Diện tích tam giác ABM
B) Diện tích tam giác ADM .......Diện tích tam giác ABM
Cho tam giác ABC có diện tích là 300 m2.Trên đáy BC lấy điểm M sao cho BM bằng MC.Tính diện tích hình tam giác ABM và ACM?
Hai tám giác ABM, ACM có chung đường cao hạ từ A và 2 cạnh đáy BM=MC=BC/2
=> Diện tích tam giác ABM=Diện tích tam giác ABM=1/2 (Diện tích tam giác ABC)=300:2=150 (m2)
Đáp số: 150m2
Vì trên đáy BC lấy điểm M sao cho BM = MC, hai tam giác ABM và ACM có chung đường cao hạ từ A và BM = MC = \(\frac{BC}{2}\)
\(\Rightarrow\) \(S_{ABM}=S_{ACM}=\frac{S_{ABC}}{2}\)
\(\Rightarrow S_{ABM}=S_{ACM}=\frac{300}{2}=150\) ( m2 )
Vậy diện tích hình tam giác ABM và ACM là: 150 m2
1,Cho tam giác ABC có diện tích bằng 175.5cm2.Trên đáy BC lấy điểm M sao cho BM=2MC.Tính diện tích tam giác ABM và ACM
2,Cho tam giác ABC có diện tích bằng 600cm2.Trên các cạnh BC;AB;AC lấy các điểm D;M;N sao cho BD=DC;MA=MB;NA=NC.Tính diện tích hình tam giác CMN?
3,Cho tam giác ABC có diện tích bằng 400cm2.Trên các cạnh BC;CA lấy điểm M và N sao cho BM=MC;AN=NC.Tính diện tích tam giác CMN?
4,Cho tam giác ABC có diện tích bằng 450cm2.Trên cạnh BC;CA lấy điểm M và N sao cho MC=2BM;NA=NC.Tính diện tích tam giác CMN?
5,Cho tam giác ABC có diện tích bằng 360cm2.Trên các cạnh AB và AC lấy các điểm M và N sao cho MA=MB;NC=2NA.Tính diện tích tam giác AMN?
Cho tam giác ABC có diện tích bằng 175,5 cm vuông . Trên đáy BC lấy điểm M sao cho BM= 2/3 BC . Tính diện tích tam giác ABM và ACM
cho tam giác abc có diện tích bằng 200cm vuông.trên bc lấy điểm m sao cho bm=3/4bc.nối a với m tính diện tích tam giác abm và tam giác acm.
Cho tam giác ABC,M là trung điểm BC
Chứng minh :a,Diện tích tam giác ABM=diện tích tam giác ACM
b, diện tích ABM =diện tích tam giác ABC/2
1: Cho hình tam giác ABC , M là trung điểm của BC . Nối A với M . Hãy chứng tỏ rằng diện tích 2 hình tam giác ABM và ACM bằng nhau.
2; Cho hình tam giác ABC có diện tích 340,2 cm2 . M và N là 2 trung điểm trên cạnh BC sao cho BM=MN=NC.Tính diện tích hình tam giác AMN
Kẻ AH vuông góc với BC
Ta có: SABM=BM×AH2 ; SACM=CM×AH2
Vì CM=BM nên CM×AH2 =BM×AH2
=> Diện tích 2 tam giác ABM và ACM = nhau
+) Xét tam giác \(ABN\) và tam giác \(ABC\)
2 tam giác chung cạnh \(AB\); chung chiều cao hạ từ \(A\) vuông góc với cạnh \(BC\); cạnh \(BN=\frac{2}{3}\) cạnh \(BC\)
\(\Rightarrow\) diện tích tam giác \(ABN=\frac{2}{3}\) diện tích tam giác \(ABC\)
\(\Rightarrow\) diện tích tam giác \(ABN\) bằng \(340,2\times\frac{2}{3}=226,8\left(cm^2\right)\)
+) Xét tam giác \(AMN\) và tam giác \(ABN\)
2 tam giác chung cạnh \(AN\) ; chung chiều cao hạ từ \(A\) vuông góc với cạnh \(BC\) ; cạnh \(MN=\frac{1}{2}\) cạnh \(BN\)
\(\Rightarrow\) diện tích tam giác \(AMN=\frac{1}{2}\) diện tích tam giác \(ABN\)
\(\Rightarrow\) diện tích tam giác \(AMN\) bằng \(226,8\times\frac{1}{2}=113,4\left(cm^2\right)\)
đáp số : \(113,4cm^2\)