Tính: 1.2+2.3+3.4+......................100.101 = ?
1.Tính
A= (1-1/22).(1-1/32)...(1-1/1002)
B= -1/1.2-1/2.3-1/3.4-...-1/100.101
C= 1.2+2.3+3.4+...+100.101
Lời giải :
Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101
3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3
=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)
=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102
=100.101.102
S=100.101.34=343400
1.Tính
a) Ta có:
A=(1-1/22).(1-1/32)...(1-1/1002)
=>A=3/22.8/32.....9999/1002
=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)
=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)
=>A=1/100.101/2
=>A=101/200
b) Ta có:
B=-1/1.2-1/2.3-1/3.4-...-1/100.101
=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)
=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)
=>B=-(1-1/101)
=>B=-100/101
c) Ta có:
C=1.2+2.3+3.4+...+100.101
=>3C=1.2.3+2.3.3+3.4.3+...+100.101.3
=>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)
=>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102
=>3C=100.101.102
=>3C=1030200
=>C=343400
Chúc bạn hok tốt nhé >:)!!!!!
Tính A=1.2+2.3+3.4+.....+100.101
A = 1.2 + 2.3 + 3.4 + ...... + 100.101
3A = 1.2.3 + 2.3.3 + 3.4.3 + ...... + 100.101.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ..... + 100.101.(102 - 99)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ...... + 100.101.102 - 99.100.101
3A = 100.101.102
A = 100.101.34
A = 343400
Tính nhanh: 1.2+2.3+3.4+...+100.101
Tính tổng A = 1.2+2.3+3.4+....+99.100+100.101
\(3A=1.2.3+2.3.\left(4-1\right)+...+100.101.\left(102-99\right)\)
\(3A=1.2.3+2.3.4-1.2.3+.......+100.101.102-99.100.101\)
\(3A=100.101.102\)
\(A=\frac{100.101.102}{3}\)
\(A=343400\)
3=1.2.3+2.3(4-1)+...+100.101(102-99)
3=1.2.3+2.3.4-1.2.3+.....+100.101.102-99.100.101
3=100.101.101
=100.101.102/3
=343400
mn ủng hộ ^--^
tính tổng
1.2+2.3+3.4+...+99.100+100.101
Đặt A = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100 + 100.101
3A = 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 + ... + 99.100.3 + 100.101.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100 + 100.101.102 - 99.100.101
3A = 100.101.102
3A = 1030200
A = 343400
Đặt A=1.2+2.3+3.4+...+99.100+100.101
3A=1.2.3+2.3.3+3.4.3+...+99.100.3+100.101.3
=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)+100.101.(102-99)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100+100.101.102-99.100.101
=100.101.102
\(\Rightarrow A=\frac{100.101.102}{3}\)
Tính nhanh:
1.2 + 2.3 + 3.4 + 4.5 + ...+ 100.101
Gọi biểu thức này là S , ta có
S =1.2 + 2.3 + 3.4 + 4.5 + ...+ 100.101
3S= 1. 2 .3 + 2. 3 .3 + 3 . 4 .3 + 4 .5 .3 + ...........+ 100 .101 .3
3S= 1.2 (3 - 0) + 2 . 3 .(4 - 1) + 3 . 4. (5 - 2 ) +.......+ 100 . 101 . (102 - 99)
3S = 1 . 2 . 3 - 0 . 1 .2 + 2 . 3 . 4 - 1 . 2 .3 + ................+ 100 . 101 .102 - 99 100 . 101
S = \(\frac{100.101.102}{3}=\frac{100.101.34}{1}\)
S = 343400
1.2+2.3+3.4+.....+100.101
Ta có:
A-B =1.2+2.3+3.4+...+100.101-
(1^2+2^2+3^2+4^2+...+100^2)
= 1.2+2.3+3.4+...+100.101-
Đặt B = 1.2+2.3 +.......+99.100+100.101
3B= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3 + 100.101.3
3B= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98) . 100.101.(102 - 99)
3B = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101 + 100.101.102) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100.99.100.101)
3B = 100.101.102 - 0.1.2
3B = 1030200 - 0
3B= 1030200
B = 1030200 : 3
B = 343400
đặt A = 1.2+2.3+3.4+.....+100.101
=> 3A = 1.2.3+2.3.3+.......+100.101.3
=> 3A = 1.2.3+2.3.(4-1)+......+100.101.(102-99)
=> 3A = 1.2.3 + 2.3.4-1.2.3 + ........+ 100.101.102 - 99.100.101
=> 3A = 100.101.102
=> A = 100.101.102 : 3
=> A = 343400
1.2 +2.3 +3.4 +...+100.101
ĐẶT S = 1.2 + 2.3 +3.4 +........ + 100.101
3S = 1 . 2 .3 + 2 . 3 . 3+ 3.4.3 + ....... + 99 . 100 . 3
3S= 1 . 2 . 3 + 2. 3 . ( 4-1 ) + ......... + 99 . 100 . (101 -98 )
3S= 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3+ 3 . 4 . 5 - 2 . 3 . 4 + ...... + 99 . 100 . 101 - 98 . 99 . 100
3S = 99 . 100 . 101
3S = 3 .33 . 100 . 101
S= 33 . 100 . 101 = 333300
Đặt A = 1.2+2.3+3.4+...+100.101
3A = 1.2.3+2.3.3+3.4.3+...+100.101.3
3A= 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)
3A= 1.2.3-0.1.2+2.3.4-1.2.3+...+100.101.102-99.100.101
3A= (1.2.3-1.2.3)+(2.3.4-2.3.4)+...+(99.100.101-99.100.101)+(100.101.102-0.1.2)
3A= 0+0+...+0+(100.101.102-0.1.2)
3A= 100.101.102-0.1.2
3A= 100.101.102
A= (100.101.102):3
A= 1030200:3
A= 343400
Tính \(B=1.2+2.3+3.4+......+100.101\)
B=1.2+2.3+3.4+...+100.101
=>3B=1.2.3+2.3.3+3.4.4+....+100.101.3
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+....+100.101.102-99.100.101
=-0.1.2-100.101.102
=1030200
=>B=1030200:3=343400
B = 1.2+2.3 +.......+99.100+100.101
3B= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3 + 100.101.3
3B= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98) . 100.101.(102 - 99)
3B = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101 + 100.101.102) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100.99.100.101)
3B = 100.101.102 - 0.1.2
3B = 1030200 - 0
3B= 1030200
B = 1030200 : 3
B = 343400
3A = 1.2.3+2.3(4-1)+3.4.(5-2)+.+99.100.(101-98)
3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.+99.100.101-98.99.100
3A = 99.100.101