cho A=\(\frac{3-x}{x-1}\).Tìm các giá trị nguyên của x để A có GTNN
cho biểu thức A =\(\frac{3-x}{x-1}\).Tìm các giá trị nguyên của x để A có GTNN
A = 2-(x-1)/x-1 = 2/x-1 - 1
Để A Min thì 2/x-1 Min
Nếu x < 1 => 2/x-1 < 0
Nếu x > 1 => 2/x-1 >0
=> để 2/x-1 Min thì x < 0
Mà x thuộc Z => x < = -1
=> x-1 < = -2
=> 2/x-1 < = 2:(-2) = -1
=> A < = -1-1 = -2
Dấu "=" xảy ra <=> x=-1
Vậy Min A = -2 <=> x=-1
Tk mk nha
Cho biểu thức: \(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
a) Với giá trị nào của x thì A xác định.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
c) Tim giá trị của x để A đạt GTNN.
a)
ĐKXĐ: \(x-4\ge0\text{ (1)};\text{ }x+4\sqrt{x-4}\ge0\text{ (2); }\frac{16}{x^2}-\frac{8}{x}+1>0\text{ (3)}\)
\(\left(1\right)\Leftrightarrow x\ge4\)
\(\left(2\right)\Leftrightarrow\left(\sqrt{x-4}+2\right)^2\ge0\text{ (đúng }\forall x\ge4\text{)}\)
\(\left(3\right)\Leftrightarrow\left(\frac{4}{x}-1\right)^2>0\Leftrightarrow\frac{4}{x}-1\ne0\Leftrightarrow x\ne4\)
Vậy ĐKXĐ là \(x>4\)
b)
\(A=\frac{\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|}{\left|\frac{4}{x}-1\right|}=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{1-\frac{4}{x}}=\frac{x\left(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\right)}{x-4}\)
\(+\sqrt{x-4}\le2\Leftrightarrow04\)
\(A=\frac{x\left(\sqrt{x-4}+2+\sqrt{x-4}-2\right)}{x-4}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}\)
Nếu \(\sqrt{x-4}\)là số vô tỉ thì A là số vô tỉ.
Để A là hữu tỉ thì \(\sqrt{x-4}=t\text{ }\left(t\in Z;\text{ }t>4\right)\Rightarrow x=t^2+4\)
Khi đó, \(A=\frac{2\left(t^2+4\right)}{t}=2t+\frac{8}{t}\)
A nguyên khi \(\frac{8}{t}\) nguyên hay \(t=8\text{ (do }t>4\text{)}\)
\(t=\sqrt{x-4}=8\Leftrightarrow x=8^2+4=68\)
Vậy \(x\in\left\{6;8;68\right\}\)
c/
\(+0
Tìm các giá trị nguyên của x để các biểu thức sau có GTNN:
\(A=\frac{1}{x-3}\)
Xét x > 3 thì A > 0
Xét x < 4 thì A < 0
vì A là số âm nên Amin \(\Leftrightarrow\)-Amax hay \(\frac{1}{3-x}\)max
xét x > 3 thì \(\frac{1}{3-x}\)< 0
xét x < 3 thì mẫu 3 - x là số nguyên dương. phân số \(\frac{1}{3-x}\)có tử và mẫu đều dương, tử không đổi nên \(\frac{1}{3-x}\)lớn nhất \(\Leftrightarrow\)3 - x min \(\Leftrightarrow\)3 - x = 1 \(\Leftrightarrow\)x = 2
Khi đó A = -1
Vậy GTNN của A là -1 khi x = 2
Đk : x khác 3
+, Nếu x < 3 => x - 3 < 0 => A = 1/x-3 < 0
+, Nếu x > 3 => x - 3 > 0 => A = 1/x-3 > 0
=> để A Min thì x < 3
Khi đó : x < = -2 => x-3 < = -2-3 = -5 => A = 1/x-3 < = 1/-5 = -1/5
Dấu "=" xảy ra <=> x = -2
Vậy GTNN của A = -1/5 <=> x=-2
Tk mk nha
Cho biểu thức :\(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
a/ Thu gọn A
b/ Tìm các giá trị của x để A<1
c) Tìm các giá trị nguyên của x để A có giá trị nguyên
Ta có \(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
\(\Leftrightarrow A=\left[\frac{2}{\left(x+1\right)^3}.\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}.\frac{x^2+1}{x^2}\right].\frac{x^3}{x-1}\)
\(\Leftrightarrow A=\left[\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\right].\frac{x^3}{x+1}=\frac{x}{x+1}\)
Để \(A=\frac{x}{x+1}< 1\Leftrightarrow\frac{1}{x+1}>0\Leftrightarrow x>-1\)
Để \(A=1-\frac{1}{x+1}\text{ nguyên thì }\frac{1}{x+1}\text{ nguyên hay }x\in\left\{-2,0\right\} \)
Cho biểu thức P=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
a) Tìm điều kiện để P xác định và rút gọn P.
b) Tìm các giá trị nguyên của x để P đạt giá trị nguyên.
c)Tìm giá trị của x để P đạt GTNN, tìm giá trị nhỏ nhất đó.
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --
kkk. thế mới hỏi chứ. đề đấy: đố giải được
Tìm các giá trị nguyên của x để các biểu thức sau có GTNN:
A = \(\frac{1}{x-3}\)
Nếu A nhỏ nhất => x-3 lớn nhất mak x\(\in\) Z . Mk k hiểu lắm x-3 lớn nhất thì nhiều số x ak, hay sao? lm giùm mk đi các bn
Tìm các giá trị nguyên của x để các biểu thuacws sau có GTNN:
\(A=\frac{1}{7-x}\)
để phân số \(A=\frac{1}{7-x}\) thì :
\(7-x\) nhỏ nhất
Mà \(7-x>0\)
\(\Leftrightarrow7-x=1\)
\(\Leftrightarrow x=6\)
Vậy ...
Cho A= \(\frac{x}{x+1}+\frac{2x}{x^2-1}-\frac{1}{1-x}\)
a. tìm ĐKXĐ và rút gọn A
b. Tìm x để A=1/2
c. tìm giá trị nguyên của x để A có GTNN
Cho A= \(\frac{x}{x+1}+\frac{2x}{x^2-1}-\frac{1}{1-x}\)
a. tìm ĐKXĐ và rút gọn A
b. Tìm x để A=1/2
c. tìm giá trị nguyên của x để A có GTNN