Tìm các giá trị nguyên của x để các biểu thức sau có GTNN:
\(A=\frac{1}{x-3}\)
Tìm các giá trị nguyên của x để các biểu thức sau có GTNN:
A = \(\frac{1}{x-3}\)
Nếu A nhỏ nhất => x-3 lớn nhất mak x\(\in\) Z . Mk k hiểu lắm x-3 lớn nhất thì nhiều số x ak, hay sao? lm giùm mk đi các bn
cho biểu thức A =\(\frac{3-x}{x-1}\).Tìm các giá trị nguyên của x để A có GTNN
A = 2-(x-1)/x-1 = 2/x-1 - 1
Để A Min thì 2/x-1 Min
Nếu x < 1 => 2/x-1 < 0
Nếu x > 1 => 2/x-1 >0
=> để 2/x-1 Min thì x < 0
Mà x thuộc Z => x < = -1
=> x-1 < = -2
=> 2/x-1 < = 2:(-2) = -1
=> A < = -1-1 = -2
Dấu "=" xảy ra <=> x=-1
Vậy Min A = -2 <=> x=-1
Tk mk nha
Tìm các giá trị nguyên của x để các biểu thuacws sau có GTNN:
\(A=\frac{1}{7-x}\)
để phân số \(A=\frac{1}{7-x}\) thì :
\(7-x\) nhỏ nhất
Mà \(7-x>0\)
\(\Leftrightarrow7-x=1\)
\(\Leftrightarrow x=6\)
Vậy ...
Tìm giá trị nguyên của x để các biểu thức sau có GTNN
a)\(A=\frac{1}{x-3}\)
b)\(B=\frac{7-x}{x-5}\)
c)\(C=\frac{5x-19}{x-4}\)
Tìm giá trị nguyên của x để biểu thức sau có GTNN:
A = \(\frac{1}{x-3}\)
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất
a. A=1/7-x b.B=27-2x/12-X
2.Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất
a. A=1/x-3 b. B= 7-x/x-5 c. C= 5x-19/x-4
3.Tìm giá trị nhỏ nhất của các biếu thức sau
a. A=x^4+3x^2 +2 b. B=(x^4+5)^2 c. C=(x-1)^2+(y+2)^2
4.Tìm giá trị lớn nhất của các biểu thức sau
a. A=5-3(2x-1)^2 b.B=1/2(x-1)^2+3 c. C=x^2+8/x^2+2
Cho biểu thức: \(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
a) Với giá trị nào của x thì A xác định.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
c) Tim giá trị của x để A đạt GTNN.
a)
ĐKXĐ: \(x-4\ge0\text{ (1)};\text{ }x+4\sqrt{x-4}\ge0\text{ (2); }\frac{16}{x^2}-\frac{8}{x}+1>0\text{ (3)}\)
\(\left(1\right)\Leftrightarrow x\ge4\)
\(\left(2\right)\Leftrightarrow\left(\sqrt{x-4}+2\right)^2\ge0\text{ (đúng }\forall x\ge4\text{)}\)
\(\left(3\right)\Leftrightarrow\left(\frac{4}{x}-1\right)^2>0\Leftrightarrow\frac{4}{x}-1\ne0\Leftrightarrow x\ne4\)
Vậy ĐKXĐ là \(x>4\)
b)
\(A=\frac{\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|}{\left|\frac{4}{x}-1\right|}=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{1-\frac{4}{x}}=\frac{x\left(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\right)}{x-4}\)
\(+\sqrt{x-4}\le2\Leftrightarrow04\)
\(A=\frac{x\left(\sqrt{x-4}+2+\sqrt{x-4}-2\right)}{x-4}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}\)
Nếu \(\sqrt{x-4}\)là số vô tỉ thì A là số vô tỉ.
Để A là hữu tỉ thì \(\sqrt{x-4}=t\text{ }\left(t\in Z;\text{ }t>4\right)\Rightarrow x=t^2+4\)
Khi đó, \(A=\frac{2\left(t^2+4\right)}{t}=2t+\frac{8}{t}\)
A nguyên khi \(\frac{8}{t}\) nguyên hay \(t=8\text{ (do }t>4\text{)}\)
\(t=\sqrt{x-4}=8\Leftrightarrow x=8^2+4=68\)
Vậy \(x\in\left\{6;8;68\right\}\)
c/
\(+0
TÌM CÁC GIÁ TRỊ NGUYÊN CỦA X ĐỂ CÁC BIỂU THỨC SAU CÓ GIÁ TRỊ NGUYÊN
a,\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
b,\(\frac{2\sqrt{x}-1}{\sqrt{x}+3}\)
a) ĐK : x >= 0 ; x khác 4
\(\frac{\sqrt{x}+3}{\sqrt{x}-2}=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}=1+\frac{5}{\sqrt{x}-2}\)
Để biểu thức có gtri nguyên thì \(\frac{5}{\sqrt{x}-2}\inℤ\Leftrightarrow\sqrt{x}-2\inƯ\left(5\right)\)( bạn tự xét tiếp )
b) ĐK : x >= 0
\(\frac{2\sqrt{x}-1}{\sqrt{x}+3}=\frac{2\sqrt{x}+6-7}{\sqrt{x}+3}=2-\frac{7}{\sqrt{x}+3}\)
Để biểu thức có gtri nguyên thì \(\frac{7}{\sqrt{x}+3}\inℤ\Leftrightarrow\sqrt{x}+3\inƯ\left(7\right)\)( tương tự )
Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên:
a) A=\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
b) B=\(\frac{2\sqrt{x}-1}{\sqrt{x}-3}\)
\(A=\frac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(A=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}\)
\(A=1+\frac{5}{\sqrt{x}-2}\)
Để A nguyên\(\Leftrightarrow1+\frac{5}{\sqrt{x}-2}\)
mà 1 nguyên \(\Rightarrow\frac{5}{\sqrt{x}-2}\)nguyên
\(\sqrt{x}-2\in\text{Ư}\left(5\right)=5;-5;1;-1\)
Lập bảng là xong nhé