Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Trọng Tiến
Xem chi tiết
tran huu dinh
Xem chi tiết
Hoàng Thị Lan Hương
7 tháng 7 2017 lúc 14:58

c. \(\hept{\begin{cases}xy-\frac{x}{y}=9,6\left(1\right)\\xy-\frac{y}{x}=7,5\left(2\right)\end{cases}}\)

Lấy (1)-(2) ta có \(\frac{y}{x}-\frac{x}{y}=\frac{21}{10}\)\(\Rightarrow\)\(\frac{y^2-x^2}{xy}=\frac{21}{10}\Rightarrow10y^2-21xy-10x^2=0\Rightarrow\left(5y+2x\right)\left(2y-5x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5y+2x=0\\2y-5x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{2}y\\x=\frac{2}{5}y\end{cases}}}\)

Với \(x=-\frac{5}{2}y\Rightarrow\left(-\frac{5}{2}y\right)y-\frac{-\frac{5}{2}y}{y}=9,6\Rightarrow-\frac{5}{2}y^2=\frac{71}{10}\Rightarrow y^2=-\frac{71}{25}\left(l\right)\)

Với \(x=\frac{2}{5}y\Rightarrow\frac{2}{5}y.y-\frac{\frac{2}{5}y}{y}=9,6\Rightarrow\frac{2}{5}y^2=10\Rightarrow y^2=25\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)

Vậy \(\left(x,y\right)=\left(2,5\right);\left(-2,-5\right)\)

Rau
7 tháng 7 2017 lúc 20:35

Sao ý b) xấu thế :v

hoàng thiện nguyễn
18 tháng 8 2020 lúc 9:30

jyqhywgvxyg

Khách vãng lai đã xóa
Trung Phan Bảo
Xem chi tiết
Phạm Hồ Thanh Quang
20 tháng 2 2019 lúc 17:08

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn

Nguyễn Minh Sang
Xem chi tiết
Trần Hữu Ngọc Minh
31 tháng 12 2018 lúc 22:13

trừ cho nhau là xong

Phương Thảo
1 tháng 2 2019 lúc 16:36

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

Darlingg🥝
17 tháng 6 2019 lúc 17:46

Thật là trừ cho nhau không ạ bạn phải tìm x và y vì đây là một bài phương trình 

hà ngọc ánh
Xem chi tiết
Cô Hoàng Huyền
27 tháng 9 2017 lúc 9:52

ĐK: \(x\ne0;y\ne0\)

Ta có hệ phương trình \(\hept{\begin{cases}x^2+xy-y^2=5\left(1\right)\\\frac{y}{x}-\frac{2x}{y}=\frac{-5}{2}-\frac{2}{xy}\left(2\right)\end{cases}}\)

Từ pt (2) ta có \(\frac{2y^2}{2xy}-\frac{4x^2}{2xy}=\frac{-5xy-4}{2xy}\Rightarrow2y^2-4x^2=-5xy-4\)

\(\Rightarrow4x^2-5xy-2y^2=4\)

Ta có hệ mới \(\hept{\begin{cases}x^2+xy-y^2=5\\4x^2-5xy-2y^2=4\end{cases}}\Leftrightarrow\hept{\begin{cases}4x^2+4xy-4y^2=20\\20x^2-25xy-10y^2=20\end{cases}}\)

\(\Rightarrow4x^2+4xy-4y^2=20x^2-25xy-10y^2\)

\(\Rightarrow-16x^2+29x+6y^2=0\Rightarrow\orbr{\begin{cases}x=2y\\x=-\frac{3y}{16}\end{cases}}\)

Với x = 2y, ta có \(\left(2y\right)^2+2y.y-y^2=5\Rightarrow5y^2=5\Rightarrow\orbr{\begin{cases}y=1\Rightarrow x=2\\y=-1\Rightarrow x=-2\end{cases}}\)

Với \(x=-\frac{3}{16}y\), ta có \(\left(-\frac{3y}{16}\right)^2+\left(-\frac{3y}{16}\right).y-y^2=5\Rightarrow-\frac{296}{256}y^2=5\) (Vô nghiệm)

Vậy hệ phương trình có nghiệm (x;y) = (2;1) hoặc (x;y) = (-2;-1).

Mai Mai
Xem chi tiết
vũ tiền châu
31 tháng 12 2017 lúc 0:52

ta có, hpt 

<=>\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{\frac{1}{x}+\frac{1}{y}}=\frac{5}{2}\\\frac{1}{x}-\frac{1}{y}+\frac{1}{\frac{1}{x}-\frac{1}{y}}=\frac{10}{3}\end{cases}}\)

đặt \(\frac{1}{x}+\frac{1}{y}=a;\frac{1}{x}-\frac{1}{y}=b\)

ta có hpt <=>\(\hept{\begin{cases}a+\frac{1}{a}=\frac{5}{2}\\b+\frac{1}{b}=\frac{10}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}2a^2-5a+2=0\\3b^2-10b+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(a-2\right)\left(2a-1\right)=0\\\left(b-3\right)\left(3b-1\right)=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}a=2\\a=\frac{1}{2}\end{cases}}\\\orbr{\begin{cases}b=3\\b=\frac{1}{3}\end{cases}}\end{cases}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}\frac{1}{x}+\frac{1}{y}=2\\\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\end{cases}}\\\orbr{\begin{cases}\frac{1}{x}-\frac{1}{y}=3\\\frac{1}{x}-\frac{1}{y}=\frac{1}{3}\end{cases}}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}a=2\\a=\frac{1}{2}\end{cases}}\\\orbr{\begin{cases}b=3\\b=\frac{1}{3}\end{cases}}\end{cases}}\)đến, đây bạn tự làm nhé, tí nó sẽ ra tổng và hiệu, thì dễ rồi

^_^

Trần Nguyễn Đức Tâm
20 tháng 1 2020 lúc 8:45

vũ tiền châu ơi, có một chỗ bạn bị nhầm:

\(\frac{x-y}{xy}=\frac{1}{y}-\frac{1}{x}\)chứ không phải \(\frac{1}{x}-\frac{1}{y}\)

Khách vãng lai đã xóa
Yim Yim
Xem chi tiết
Cô Hoàng Huyền
28 tháng 9 2017 lúc 16:20

Ta có hệ \(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\left(1\right)\\xy+\frac{1}{xy}=\frac{5}{2}\left(2\right)\end{cases}}\)

ĐK: \(x\ne0,y\ne0\)

Từ phương trình (2) ta có \(\frac{x^2y^2+1}{xy}=\frac{5}{2}\Rightarrow2x^2y^2-5xy+2=0\Rightarrow\orbr{\begin{cases}x=\frac{2}{y}\\x=\frac{1}{2y}\end{cases}}\)

TH1: \(x=\frac{2}{y},\) thế vào phương trình (1) ta có: 

 \(\frac{2}{y}+y+\frac{y}{2}+\frac{1}{y}=\frac{9}{2}\Rightarrow\frac{3y}{2}+\frac{3}{y}=\frac{9}{2}\Rightarrow\frac{y}{2}+\frac{1}{y}=\frac{3}{2}\)

\(\Rightarrow\frac{y^2+2}{2y}=\frac{3}{2}\Rightarrow2y^2-6y+4=0\Rightarrow\orbr{\begin{cases}y=2\\y=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\) 

TH2: \(x=\frac{1}{2y},\)

Thế vào phương trình (1) ta có: 

 \(\frac{1}{2y}+y+2y+\frac{1}{y}=\frac{9}{2}\Rightarrow3y+\frac{3}{2y}=\frac{9}{2}\Rightarrow y+\frac{1}{2y}=\frac{3}{2}\)

\(\Rightarrow\frac{2y^2+1}{2y}=\frac{3}{2}\Rightarrow4y^2-6y+2=0\Rightarrow\orbr{\begin{cases}y=1\\y=\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}}\) (Vô nghiệm)

Tóm lại, ta có 4 cặp nghiệm \(\left(1;2\right),\left(2;1\right),\left(1;\frac{1}{2}\right),\left(\frac{1}{2};1\right)\)

Dương Kaioshin
Xem chi tiết
Thanh Tâm
Xem chi tiết