cho x,y là hai số dương thõa mản x^2+y^2 =4
tìm GTNN cũa biễu thức
b=(x+1/y)^2 + (y+1/x)^2
Cho hai số thực dương x,y thõa mãn : x^4+y^4+1/xy=xy + 2
Tìm GTLN VÀ GTNN của P=xy
Tìm GTNN của biểu thức :
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)trong đó x,y la các số dương thay đổi , thõa mãn x+y=1
Giúp nha
Ta có:
\(\left(x-\frac{1}{y}\right)^2\ge0\Rightarrow x^2+\frac{1}{y^2}\ge2.\frac{x}{y}\)
\(\left(y-\frac{1}{x}\right)^2\ge0\Rightarrow y^2+\frac{1}{x^2}\ge2.\frac{y}{x}\)
Mặt khác , vì \(x>0;y>0\)nên suy ra
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\ge2.\frac{x}{y}.2.\frac{y}{x}=4\)
Vậy GTNN của M là 4, khi xy=1
P/s tham khảo nha
câu 1: tìm các cặp số nguyên (x; y) thõa mản 10x+y=x2+y2+1
câu 2: tìm số nguyên dương nhỏ nhất thỏa : chia 2 dư 1, chia cho 3 dư 2, chia cho 4 dư 3 , chia cho 5 dư 4, chia cho 6 dư 5, chia cho 7 dư 6, chia cho 8 dư 7, chia cho 9 dư 8, chia cho 10 dư 9.
câu 3 tìm các cặp số (x; y) nguyên dương nghiệm đúng phương trình 5x4-8(12-y2)=2207352
Tìm các số tự nhiên x,y thõa mản :
a) xy+4x=35+5y
b) (2^/x/)+(y^2)+y=2x+1
a) xy + 4x = 35 + 5y
=> xy + 4x - 5y = 35
=> x(y + 4) - 5(y + 4) = 15
=> (x - 5)(y + 4) = 15
=> x - 5;y + 4 \(\in\)Ư(15) = {1; 3; 5; 15}
Lập bảng :
x - 5 | 1 | 3 | 5 | 15 |
y + 4 | 15 | 5 | 3 | 1 |
x | 6 | 8 | 10 | 20 |
y | 11 | 1 | -1(loại) | -3(loại) |
Vậy ...
b) 2|x| + y2 + y = 2x + 1
Ta có: 2x + 1 là số lẻ => 2|x| + y2 + y là số lẻ
Mà y2 + y = y(y + 1) là số chẵn => 2|x| là số lẻ
<=> 2|x| = 1 <=> 2|x| = 20 <=> |x| = 0 <=> x = 0
Với x = 0 => 20 + y2 + y = 2.0 + 1
=> 1 + y2 + y = 1
=> y(y + 1) = 0
=> \(\orbr{\begin{cases}y=0\\y+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Do x; y \(\in\)N => x = y = 0 (tm)
Cho x,y là các số dương thõa mãn x+y=1
Tìm GTNN của biểu thức \(A=\frac{1}{x}+\frac{4}{y}\)
\(A=\frac{1}{x}+\frac{4}{y}\ge\frac{\left(1+2\right)^2}{x+y}=9\) ( BĐT Cauchy - Schwart)
Xảy ra đẳng thức khi và chỉ khi \(\frac{1}{x}=\frac{2}{y}\) và x + y = 1 \(\Rightarrow y=2x=2\left(1-y\right)\Rightarrow y=\frac{2}{3}\Rightarrow x=\frac{1}{3}\)
Vậy min A = 9 khi và chỉ khi \(y=\frac{2}{3};x=\frac{1}{3}\)
\(A=\frac{1}{x}+\frac{1}{\frac{1}{2}y}+\frac{1}{\frac{1}{2}y}\)
Có:\(\frac{1}{x}+\frac{1}{\frac{1}{2}y}+\frac{1}{\frac{1}{2}y}\ge\frac{9}{x+\frac{1}{2}y+\frac{1}{2}y}=9\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}y=\frac{1}{3}\)
tick nhé
cho x,y là các số dương thõa mãn x+y=1
tìm GTNN của biểu thức \(A=\frac{1}{x}+\frac{4}{y}\)
Áp dụng BĐT Bun .... :
\(A=\frac{1}{x}+\frac{4}{y}=\left(x+y\right)\left(\frac{1}{x}+\frac{4}{y}\right)=\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{2}{\sqrt{y}}\right)^2\right]\)
\(\ge\left[\sqrt{x}\cdot\frac{1}{\sqrt{x}}+\sqrt{y}\cdot\frac{2}{\sqrt{y}}\right]^2=\left(1+2\right)^2=9\)
Vậy Min A = 9 tại \(\frac{\sqrt{x}}{\frac{1}{\sqrt{x}}}=\frac{\sqrt{y}}{\frac{2}{\sqrt{y}}}\Rightarrow x=\frac{y}{2}\) thay vào x + y = 1 Giải ra x ; y
1/cho số a,b,c thõa mãn diều kiện abc =2006
tính P=\(\frac{2006a}{ab+2006a+2006}-\frac{b}{bc+b+2006}+\frac{c}{ac+c-1}\)
2/ cho x,y là 2 số duongr thõa mãn x+y<1
tìm GTNN của A=\(\frac{1}{x^2+y^2}+\frac{2}{xy}\)
3/chứng minh rằng nếu a,b,c là chiều dài 3 cạnh của 1 tam giác thì
ab+bc>=\(a^2+b^2+c^2\)<2(ab+bc+ca)
4/tìm x,y,z biết
\(\frac{x}{y+2+1}-\frac{y}{x+2+2}-\frac{z}{x+y-3}=x+y+z\)
5/tìm GTNN của biểu thức
\(\sqrt{x-2}+\sqrt{y-4}\)biết x+y=8
1. Cho (x;y) là nghiệm nguyên của phương trình: 1003x+2y=2008. Biểu thức A= \(x^2+y^2\)có giá trị bằng?
2. Cho hai số dương x;y thõa mãn x+y=2. Tìm Max B= \(2xy\left(x^2+y^2\right)\)
bạn ơi câu 1 phương trình có đúng không vậy?
Câu 1 : Cho \(\left(x_0;y_0\right)\)là nghiệm nguyên dương của phương trình 1003x+2y=2008. Biểu thức A= \(x_0^2+y_0^2\)có giá trị bằng?
nhận xét rằng 1003x chia hết cho 2
đặt x=2k(k thuoc Z)
thay vào pt. biểu diễn y theo k
cm pt luôn có nghiệm với mọi x, y thuộc Z
Cho x,y là các số dương thõa mãn x + y = 1
Tìm GTNN của biểu thức : \(A=\frac{1}{x}+\frac{4}{y}\)
A=x+y)(1/x+1/y)
phá ra áp dụng cô si cho 2 cái ẩn,,,dấu = 2x=y