Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Jeese
Xem chi tiết
Nguyễn Huy Tú
12 tháng 3 2022 lúc 21:39

a, bậc 6 

b, bậc 6 

c, bậc 12 

d, bậc 9 

e, bậc 8 

xuan vu
13 tháng 4 2022 lúc 18:30

huhu

Ha Viet Dung
Xem chi tiết
Nguyễn Ngọc Bảo
23 tháng 8 2020 lúc 21:31

?????

Khách vãng lai đã xóa
Cô Pê
Xem chi tiết
Akai Haruma
29 tháng 12 2018 lúc 17:17

Lời giải:

Biến đổi biểu thức kết hợp với áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(\text{VT}=\sqrt{x^2+2y^2-6x+4y+11}+\sqrt{x^2+3y^2+2x+6y+4}\)

\(=\sqrt{(x^2-6x+9)+2(y^2+2y+1)}+\sqrt{(x^2+2x+1)+3(y^2+2y+1)}\)

\(=\sqrt{(x-3)^2+2(y+1)^2}+\sqrt{(x+1)^2+3(y+1)^2}\)

\(\geq \sqrt{(x-3)^2}+\sqrt{(x+1)^2}=|x-3|+|x+1|=|3-x|+|x+1|\)

\(\geq |3-x+x+1|=4\)

Dấu "=" xảy ra khi :

\(\left\{\begin{matrix} (y+1)^2=0\\ (3-x)(x+1)\geq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} y=-1\\ -1\leq x\leq 3\end{matrix}\right.\)

Nguyễn Hiền Mai
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 6 2019 lúc 21:01

a/ ĐKXĐ:...

\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xy=4\\4y^2+xy=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x^2+15xy=20\\16y^2+4xy=20\end{matrix}\right.\)

\(\Rightarrow5x^2+11xy-16y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(5x+16y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-\frac{16}{5}y\end{matrix}\right.\)

Bạn tự thế vào một trong hai pt giải tiếp

tthnew
29 tháng 6 2019 lúc 20:37

Woa nghiệm đẹp:) Nhưng em giải đúng hay ko là một chuyện:v

ĐK: \(x\ge-\frac{3}{2}\)

PT \(\Leftrightarrow x^2+4x+3+\left(2-2\sqrt{2x+3}\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)+\frac{4-4\left(2x+3\right)}{2+\sqrt{2x+3}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-\frac{8\left(x+1\right)}{2+\sqrt{2x+3}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3-\frac{8}{2+\sqrt{2x+3}}\right)=0\)

Giải cái ngoặc nhỏ suy ra x = -1

Giải cái ngoặc to:

\(\Leftrightarrow x+3=\frac{8}{2+\sqrt{2x+3}}\)

Nghiệm xấu quá :( => em bí.

tthnew
30 tháng 6 2019 lúc 8:42

Đánh máy ẩu và sai lầm chết người -_-" Ai đó xóa giúp em bài kia với ạ. Em cảm ơn. Nói gì thì nói chứ cách em phức tạp quá:( Mà chưa chắc đúng.

ĐK: \(x\ge-\frac{3}{2}\)

PT \(\Leftrightarrow\left(x^2+4x+3\right)+\left(2-2\sqrt{2x+3}\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-\frac{8\left(x+1\right)}{2+2\sqrt{2x+3}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3-\frac{8}{2+2\sqrt{2x+3}}\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3-\frac{4}{1+\sqrt{2x+3}}\right)=0\)

\(\Leftrightarrow x=-1\)

Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 20:23

a: \(=\sqrt{x-3-2\sqrt{x-3}+3}\)

\(=\sqrt{x-3-2\sqrt{x-3}+1+2}=\sqrt{\left(\sqrt{x-3}-1\right)^2+2}>=\sqrt{2}\)

Dấu = xảy ra khi x-3=1

=>x=4

 

Lai Thi Thuy Linh
Xem chi tiết
Phương An
13 tháng 10 2016 lúc 19:16

\(4x^2+8xy-3x-6y=4x\left(x+2y\right)-3\left(x+2y\right)=\left(4x-3\right)\left(x+2y\right)\)

\(x^4y-3x^3y^2+3x^2y^3-xy^4=xy\left(x^3-3x^2y+3xy^2-y^3\right)=xy\left(x-y\right)^3\)

\(x^3-5x^2-14x=x\left(x^2-5x-14\right)=x\left(x^2-7x+2x-14\right)=x\left[x\left(x-7\right)+2\left(x-7\right)\right]=x\left(x-7\right)\left(x+2\right)\)

\(x^4+4y^4=\left(x^2\right)^2+2\times x^2\times2y^2+\left(2y^2\right)^2-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Hạ Tử Nhi
Xem chi tiết
Cuộc Sống
Xem chi tiết
Trần Thị Su
Xem chi tiết
Nguyễn Ngọc Huy Toàn
3 tháng 4 2022 lúc 19:17

Đặt \(\left\{{}\begin{matrix}x-2y=a\\\dfrac{1}{2x+3y}=b\end{matrix}\right.\) 

hpt trở thành:

\(\left\{{}\begin{matrix}a+b=2\\2a+3b=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2x+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2\left(3+2y\right)+3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\6+4y+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\7y=-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2.-1\\y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy nghiệm hpt \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)