1/6+1/12+1/20+1/30+1/42+1/56+1/72
Tính: B=1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72
A=1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
em lớp 6 nha
B= 1/2 + 1/6 + 1/12 +1/20 + 1/30 + 1/42 + 1/56 + 1/72
B= 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + 1/5*6 + 1/6*7 + 1/7*8 + 1/8*9
B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
B=1+0-0-0-0-0-0-0-1/9
B=1-1/9
B=8/9
k em nha
1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72=????
1/2+1/6+...+1/72=1/1x2+1/2x3+...+1/8x9=1/1-1/2+1/2-1/3+...+1/8-1/9=1-1/9=8/9
A= 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
A=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
A=1/2-1/10
A=2/5
1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72 = ?
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(=\frac{1}{1}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-..........-\frac{1}{8}+\frac{1}{9}\)
\(=\frac{1}{1}-\frac{1}{9}\)
\(=\frac{8}{9}\)
Mình giải đúng đó
Tính B=1/96-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/12
1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
\(\text{Ta có: }\)\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{9.8}+\frac{1}{8.7}+\frac{1}{7.6}+\frac{1}{6.5}+\frac{1}{5.4}+\frac{1}{4.3}+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}=-\frac{81}{90}=-\frac{9}{10}\)
<=>
D = 1/90+1/72+1/56+1/42+1/30+1/20+1/12+1/6+1/2
D = 1/(1x2) + 1/(2x3) + 1/(3x4) + 1/(4x5) + 1/(5x6) + … + 1/(9x10)
D = 1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 + …. + 1/9 – 1/10
D = 1 – 1/10
D = 9/10
=1/(9.10)-1/(8.9)-1/(7.8)-1/(6.7)-1/(5.6)-1/(4.5)-1/(3.4)-1/(2.3)-1/(1.2)
sau đó làm tiếp nha bạn
1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2 = ?
1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
( 1/90 + 1/72 + ... + 1/2)
= - { 1/( 9.10) + 1/(9.8) + ... + 1/( 2.1)}
= - ( 1/9 - 1/10 + 1/8 - 1/9 + ...+ 1 - 1/2) ( 1/90 = 1/(9.10) = 1/9 - 1/10)
= - ( 1 - 1/10)
= -9/10
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+.....+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)
\(\frac{1}{2}+\frac{1}{6}+.......+\frac{1}{90}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{10}\)
=\(1-\frac{1}{10}\)
\(=\frac{9}{10}\)