Cho tổng S=1+3+5+...+2015+2017
Chứng tỏ S là một số chính phương.
Câu hỏi 1: Chứng minh số 2016201720162017 là hợp số
Câu hỏi 2: Cho tổng S :1+3+5+...+2015+2017
Chứng tỏ S là một số chính phương
Cho tổng S = 1 + 3 + 5 + ... + 2015 + 2017
Chứng minh S là một số chính phương
Số số hạng của S là :
(2017-1):1+1=2017(số hạng)
Tổng của S là : (2017+1).2017:2 = 1018081
Vì 1018081=10092 nên S là số chính phương. Chúc bạn học tốt nhé
Cho tổng S= 1+3+5+....+2009+2011
a, chứng tỏ S là 1 số chính phương
b, Tìm các ước nguyên tố khác nhau của S
Answer:
a. \(S=1+3+5+...+2009+2011\)
Số các số hạng của tổng: \(\left(2011-1\right):2+1=1006\) số hạng
Có \(S=\frac{\left(2011+1\right).1006}{2}=1012036\)
Mà \(1012036=1006^2\)
Vậy S là một số chính phương.
b. \(1012036=2^2.503^2\)
Vậy ước nguyên tố của \(S=\left\{2;503\right\}\)
Tìm tổng : S =1+2+3+...+2017. Chứng tỏ S là một số chính phương
S=1+2+3+...+2017
Tổng của dãy : 2017 x \(\frac{2017+1}{2}\)=2035153
Số chính phương không bao giờ có tận cùng là 2,3,7,8
Mà \(\sqrt{2035153}=1426,587887....\)
Nên S không phải số chính phương
Cho tổng: S = 1 + 3 + 5 + ... + 2011 + 2013 . chứng minh tổng S là một số chính phương
S = 1 + 3 + 5 +...+ 2011 + 2013
Số số hạng của S là
(2013 - 1) : 2 + 1 = 1007 (số hạng)
TBC của dãy số trên là
(2013 + 1) : 2 = 1007
Tổng S là
1007 . 1007 = 10072
Vậy tổng S là một số chính phương
cho tổng s = 1+3+5+7+9+...+2009+2011
chứng minh s là một số chính phương
Theo công thức tính tổng S = 1+2+3+...+n = [n.(n+1)] : 2
Suy ra : S = 1+3+5+...+2011=1+2+3+...+2010+2011 - (2+4+6+...+2010)
= 1+2+3+...+2010+2011-2(1+2+3+...+1005)
= 2011 x 2012:2 - 2(1005.1006:2)= 1012036
Mà : 1012036 có chữ số tận cùng = 6 và 1012036 = 2\(^2\).503\(^2\)(số mũ chẵn), 1012036 = 1006\(^2\)
Suy ra : 1012036 là số chính phương.
Cho S= 1+3+5+.....+2009+2011
a) Tính S
b) Chứng tỏ rằng S là một số chính phương
c) Tìm các ước nguyên tố khác nhau của S
a) b) \(S=1+3+5+...+2009+2011\)
Tổng trên là tổng các số hạng cách đều, số hạng sau hơn số hạng trước \(2\)đơn vị.
Số số hạng của tổng trên là: \(\left(2011-1\right)\div2+1=1006\)
Giá trị của tổng trên là: \(S=\left(2011+1\right)\times1006\div2=2012\times1006\div2=1006^2=1012036\)
c) Phân tích thành tích cách thừa số nguyên tố: \(1006=2.503\)
Nên cách ước nguyên tố của \(S\)là \(2,503\).
Cho S=1+3+5+...+2011.
a,Tính S và chứng tỏ S là số chính phương.
b,Tìm các ước nguyên tố khác nhau của S.
a) S = [(1 + 2011) x ( 2011 - 1) : 2 + 1] : 2 = 1006 x 1006 = 1012036
=> 10062 = Số chính phương
b) Các ước nguyên tố khác nhau: 1012036 = 2 . 2 . 253009
=> Có 2 ước nguyên tố là 2 và 253009
Cho S = 1 + 3 + 5 + ...... + 2015 + 2017.
Phát biểu nào dưới đây là đúng: