Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HuanVo
Xem chi tiết
Nguyễn Ngọc Tường Vy
Xem chi tiết
Trần Quốc Khanh
13 tháng 8 2020 lúc 13:41

Mai mk làm cho

Alice Sophia
Xem chi tiết
Alice Sophia
Xem chi tiết
trần thành đạt
Xem chi tiết
nguyễn trí tâm
11 tháng 12 2019 lúc 16:22

ai làm đi

Khách vãng lai đã xóa
Ngô Anh Quốc
Xem chi tiết
Minh Thư
Xem chi tiết
Kiệt Nguyễn
13 tháng 12 2019 lúc 17:59

Áp dụng BĐT Bunhiacopxki:

\(\left(1^2+4^2\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(1.a+4.\frac{1}{b}\right)^2\)\(\Rightarrow a^2+\frac{1}{b^2}\ge\frac{1}{17}\left(a+\frac{4}{b}\right)^2\)

\(\Rightarrow\sqrt{a^2+\frac{1}{b^2}}\ge\frac{1}{\sqrt{17}}\left(a+\frac{4}{b}\right)\)

Tương tự, ta có: \(\sqrt{b^2+\frac{1}{c^2}}\ge\frac{1}{\sqrt{17}}\left(b+\frac{4}{c}\right)\)

và \(\sqrt{c^2+\frac{1}{a^2}}\ge\frac{1}{\sqrt{17}}\left(c+\frac{4}{a}\right)\)

Cộng từng vế của các BĐT trên, ta được:

\(P\ge\frac{1}{\sqrt{17}}\left(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)\)\(\ge\frac{1}{\sqrt{17}}\left(a+b+c+\frac{36}{a+b+c}\right)\)(svac - xơ)

\(=\frac{1}{\sqrt{17}}\left[\left(a+b+c\right)+\frac{9}{4\left(a+b+c\right)}+\frac{135}{4\left(a+b+c\right)}\right]\ge\frac{3\sqrt{17}}{2}\)

Vậy \(P=\sqrt{a^2+\frac{1}{b^2}}\)\(+\sqrt{b^2+\frac{1}{c^2}}\)\(+\sqrt{c^2+\frac{1}{a^2}}\ge\frac{3\sqrt{17}}{2}\)

(Dấu "="\(\Leftrightarrow a=b=c=2\))

Khách vãng lai đã xóa
Nguyễn Linh Chi
14 tháng 12 2019 lúc 14:06

Bài em làm ok rồi nhưng mà dấu bằng xảy ra bị sai. Em kiểm tra lại!๖²⁴ʱČøøℓ ɮøү 2к⁷༉

Khách vãng lai đã xóa
Kiệt Nguyễn
14 tháng 12 2019 lúc 16:57

Vâng!!! Cảm ơn cô Nguyễn Linh Chi. Cho mk sửa

Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{2}\))

Khách vãng lai đã xóa
Nguyễn Hà Anh
Xem chi tiết
Phuong Anh
Xem chi tiết
Nguyễn Anh Quân
9 tháng 11 2017 lúc 14:47

Xét \(\sqrt{a^2-ab+b^2}\) = \(\sqrt{\left(a^2+2ab+b^2\right)-3ab}\) = \(\sqrt{\left(a+b\right)^2-3ab}\)

     >= \(\sqrt{\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2}\)( bđt ab <= (a+b)^2/4) = 1/2 (a+b)

Tương tự căn (b^2-bc+c^2) >= 1/2(b+c) ; (c^2-ca+a^2) >= 1/2 (c+a)

=> B >= 1/2 . (a+b+b+c+c+a) = 1/2 . 2 . (a+b+c) = 1 => ĐPCM

Dấu "=" xảy ra <=> a=b=c=1/3