Cho tam giác ABC vuông tại A, M di động trên BC. N, P là hình chiếu của M trên AB và AC.
a) Tứ giác ANMP là hình gì? Vì sao?
b) Gọi I là trung điểm của NP. Hỏi M di động trên BC thì I di động trên đường nào?
1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR giao điểm hai đường chéo nằm trên 1 đường trong cố định
2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động
3. Cho (O,R) BC là dây cố định. A là 1 điểm di động trên (O,R). Lấy M đối xứng với C qua trung điểm I của AB. Hỏi M di động trên đường nào khi A di động
4. Cho A di chuyển trên (O,R) đường kính BC gọi M đối xứng với A qua B, H là hình chiếu của A trên BC, I là trung điểm HC
a. CMR M chuyển động trên (O,R) 1 đường thẳng tròn cố định
b. CMR tam giác AHM đồng dạng tam giác CIA
c. CMR MH vuông góc AI
d MH cắt (O) tại E và F đường thẳng AI cắt (O) tại G. CMR Tổng bình phương các cạnh của tứ giác AEGF ko đổi
cho tam giác ABC vuông can tại A.từ điểm H treenBC vẽ một đường thẳng vuông góc với BC cắt AB và AC ở I và K.Gọi E là trung điểm BI,F là trung điểm CK.
a,tứ giác AEHF là hình gì?Vì sao?
b,khi H di động trên BC thì trung điểm o của EFdi động trên đường nào?
Bài 2: Cho tam giác ABC, M di động trên BC. Qua M kẻ MD // AC. ME// AB
( D thuộc AB, E thuộc AC )
a) Tứ giác ADME là hình gì ?
b) Gọi O là giao điểm của AM và DE. Khi M di động trên BC thì O di động trên
đường nào?
cho ta giác ABC cân tại B , đường trung tuyến BN. gọi K là trung điểm BC, H là điểm đối xứng với N qua điểm K
a) tứ giác BNCH là hình gì ? vì sao
b) tứ giác ABHN là hình gì ? vì sao?
c) tìm điều kiện của tam giác ABC, điểm M di chuyển trên cạnh AC. kẻ ME song song BC ,MF song song AB( E thuộc AB F thuộc BC ). trung điểm O của EF chuyển động trên đường gì.
câu c dư nha tìm điều kiện của tam giác ABC để tứ giác BNCH là hình vuông
nha giúp với
Cho △ ABC cân tại A. Điểm M và điểm I theo thứ tự là trung điểm của cạnh đáy BC và cạnh bên AC. Gọi K là điểm đối xứng với điểm M qua điểm I
a) Chứng minh: AK // BC
b) Chứng minh: Tứ giác ABMK là hình bình hành
c) Tìm thêm điều kiện của tam giác cân ABC để tứ giác AMCK là hình vuông
d) Chứng minh rằng nếu AM cố định, B,C di động trên đường thẳng vuông góc với AM taih M sao cho △ ABC cân tại A thì điểm I sẽ di động trên một đường thẳng cố định
:))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))chịu thôi khó mãi thôi chỉ cho câu D là được rồi
Cho nửa đường tròn tâm O đường kính AB vẽ OC vuông góc với AB, nằm trên cung nhỏ BC lấy M tùy ý, lấy H là hình chiếu của C trên AM
a) Chứng minh tam giác HCM vuông cân
b) Gọi I là giao điểm của CM với BO, MI cắt nửa đường tròn tâm O tại D. Chứng minh CM//BD
c) Tìm vị trí M trên BC để HC=HO
d) Gọi N là giao điểm của AM và OC. Khi M di động trên cung nhỏ BC thì trung điểm K của BN di động trên đường nào vì sao ?
Cho tam giác ABC vuông tại A. Điểm D trên cạnh BC, vẽ DM vuông góc với AB tại M, DN vuông góc với AC tại N.
a) Tứ giác AMDN là hình gì? Vì Sao? Tính diện tích tứ giác AMDN biết AM = 3cm, AD = 5cm.
b) Gọi AH là đường cao của tam giác ABC. Tính góc MHN.
c) Khi điểm D di chuyển trên cạnh BC thì trung điểm I của MN di chuyển trên đoạn thẳng nào?
Giải thích các bước giải:
a. Vì DM⊥AB⇒ˆDMA=90oDM⊥AB⇒DMA^=90o,
DN⊥AC⇒ˆDNA=90oDN⊥AC⇒DNA^=90o,
ΔABC⊥A⇒ˆA=90oΔABC⊥A⇒A^=90o
⇒◊AMDN⇒◊AMDN là hình chữ nhật.
Áp dụng định lý Pitago vào ΔAMD⊥M,AM=3cm,AD=5cmΔAMD⊥M,AM=3cm,AD=5cm có:
MD=√AD2−AM2=4cmMD=AD2−AM2=4cm
⇒SAMDN=AM.DM=12cm2⇒SAMDN=AM.DM=12cm2
b. Gọi AD∩MN=E⇒EAD∩MN=E⇒E là trung điểm AD, MN
Mà AH⊥BCAH⊥BC
ΔAHD⊥H,EΔAHD⊥H,E là trung điểm cạnh huyền ADAD
⇒EH=EA=ED=EM=EN⇒EH=EA=ED=EM=EN
⇒ΔMHN⇒ΔMHN vuông tại HH
⇒ˆMHN=90o⇒MHN^=90o
c. Gọi G,IG,I là trung điểm AB,ACAB,AC suy ra GIGI là đường trung bình của ΔABCΔABC
⇒GI//BC⇒GI//BC
⇒GE,EI⇒GE,EI là đường trung bình ΔABD,ΔADC⇒GE//BD,EI//DCΔABD,ΔADC⇒GE//BD,EI//DC hay GE,EI//BCGE,EI//BC
⇒E∈GI⇒E∈GI
⇒⇒ Trung điểm EE của MNMN di chuyển trên đường trung bình ΔABCΔABC.
cho tam giác ABC vuông ở A .M là một điểm thuộc cạnh BC . Gọi D,E lần lượt là các hình chiếu của M lên AB và AC
â) so sánh AM và DE
b)Gọi I là trung điểm của DE .Khi điểm M di động trên BC thì điểm I di động trên đường nào
c) tìm vị trí của điểm M trên BC để DE ngắn nhất
AI TRẢ LỜI NHANH VÀ ĐÚNG MÌNH TICK NHA
Mik chỉ biết vẽ hình thôi.Mik ko biết làm bạn ạ.(Bạn ơi câu a, mik thấy trong sách bài tập ,bạn nhìn theo mà làm) o.o
cho tam giác ABC vuông tại A có đường cao AH
a, CMR: AH . BC = AB . AC
b, gọi M là điểm thuộc BC gọi N và P lần lượt là các hình chiếu của M trên AB,AC . Tứ giác ANMP là hình gì? Vì sao?
c, Tính góc NHP
d, Tìm vị trí của M trên BC để NP ngắn nhất
a) Ta có ngay AH.BC = AB.AC \(\left(=\frac{1}{2}S_{ABC}\right)\)
b) Xét tứ giác NMPA có 3 góc vuông nên NMPA là hình chữ nhật.
c) Ta có ngay \(\Delta MPC\sim\Delta AHC\left(g-g\right)\Rightarrow\frac{MP}{AH}=\frac{PC}{HC}\Rightarrow\frac{NA}{PC}=\frac{AH}{HC}\)
Lại có \(\widehat{NAH}=\widehat{PCM}\) (Cùng phụ với góc HAC)
\(\Rightarrow\Delta NAH\sim\Delta PCH\left(c-g-c\right)\Rightarrow\widehat{NHA}=\widehat{PHC}\)
Vậy nên \(\widehat{NHP}=\widehat{NHA}+\widehat{AHP}=\widehat{PHC}+\widehat{AHP}=\widehat{AHC}=90^o\)
d) Dp ANMP là hình chữ nhật nên NP = AM
Lại có AM là đường xiên nên \(AM\ge AH\Rightarrow NP\ge AH\)
Vậy NP ngắn nhất khi M trùng H.