GIAI HỘ VỚI AI GIẢI ĐƯỢC TICKS CHO
MỘT CUỘC THI CHẠY TIẾP SỨC THEO VONG TRÒN GỒM NHIỀU CHẶNG. BIẾT RẰNG CHU VI ĐƯỜNG TRÒN ĐÓ LÀ 330M,MỖI CHẶNG DAI 75M, DỊA ĐIỂM XUẤT PHÁT CÙNG MỘT CHỖ . HỎI CÓ BAO NHIÊU CHẶNG?
Hai vật A và B chuyển động tròn đều trên hai đường tròn tiếp xúc nhau. Chu kì của A là 4s, còn chu kì của B là 2s. Biết rằng tại thời điểm ban đầu chúng xuất phát cùng một lúc từ điểm tiếp xúc của hai đường tròn và chuyển động ngược chiều nhau. Khoảng thời gian ngắn nhất để hai vật gặp nhau là
A. 1 s.
B. 2 s.
C. 6 s.
D. 4 s.
Chọn D.
Ban đầu hai vật xuất phát cùng một lúc từ điểm tiếp xúc của hai đường tròn và chuyển động ngược chiều nhau nên hai vật gặp nhau khi chúng đi đi qua điểm xúc của hai đường tròn vào cùng một thời điểm.
A quay 1 vòng hết 4s, B quay 1 vòng hết 2 s, do vậy thời gian ngắn nhất để hai vật gặp nhau là BCNN(4, 2) = 4 s.
Hai vật A và B chuyển động tròn đều trên hai đường tròn tiếp xúc nhau. Chu kì của A là 4s, còn chu kì của B là 2s. Biết rằng tại thời điểm ban đầu chúng xuất phát cùng một lúc từ điểm tiếp xúc của hai đường tròn và chuyển động ngược chiều nhau. Khoảng thời gian ngắn nhất để hai vật gặp nhau là
A. 1s
B. 2s
C. 6s
D. 4s
Chọn D.
Ban đầu hai vật xuất phát cùng một lúc từ điểm tiếp xúc của hai đường tròn và chuyển động ngược chiều nhau nên hai vật gặp nhau khi chúng đi đi qua điểm xúc của hai đường tròn vào cùng một thời điểm.
A quay 1 vòng hết 4s, B quay 1 vòng hết 2 s, do vậy thời gian ngắn nhất để hai vật gặp nhau là BCNN(4, 2) = 4 s.
cho tứ giác ABCD ngoại tiếp đường tròn tâm I .gọi M,N,P,Q theo thứ tự là điểm tiếp xúc của đường tròn với các cạnh AB,BC,CD,DA. chứng minh rằng nếu MP vuông góc với NQ thì ABCD nội tiếp được một đường tròn
Giải giúp tớ với, cần gấp câu trả lời
Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A là tiếp điểm và cát tuyến SCB không qua tâm sao cho O nằm trong góc ASB ( C nằm giữa S và B ). Gọi H là trung điểm của CB
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Tính chu vi và diện tích của đường tròn ngoại tiếp tứ giác SAOH
c) Tính tích SC.SB
Cho 2 đường tròn (O,R) và (O',R') cắt nhau tại I và J (R' >R) .KẺ tiếp tuyến chung của 2 đường tròn đó , chúng cắt nhau tại A. Gọi B,C là các tiếp điểm của 2 tiếp tuyến trên với (O',R'),D là tiếp điểm của tiếp tuyến AB với (O,R) ( diểm I, B ở cùng mặt phẳng bờ là O'A). Đường thẳng AI cắt (O',R') tại M khác I. K là giao của ỊJ với BD. CMR:
AM là tiếp tuyến của đường tròn ngoại tiếp tam giác IBD
Ta có: \(OD//O'B\left(\perp AB\right)\)
\(\Rightarrow\frac{AO}{AO'}=\frac{OD}{O'B}=\frac{R}{R'}=\frac{OI}{O'M}=\frac{OI}{O'I}\)
OI cắt O’I và A, I, M thẳng hàng ( gt ) nên suy ra OI // O’M \(\Rightarrow\widehat{DOI}=\widehat{BO'M}\)
Mà \(\widehat{BDI}=\frac{1}{2}\widehat{DOI}=\frac{1}{2}\)sđ cung DI và \(\widehat{BIM}=\frac{1}{2}\widehat{BO'M}=\frac{1}{2}\)sđ cung \(BM\Rightarrow\widehat{BDI}=\widehat{BIM}\)
Nên AM là tiếp tuyến của đường tròn ngoại tiếp của tam giác BDI ( đpcm )
hai đường tròn tâm (O1) và (O2) tiếp xúc ngoài nhau. đường thẳng chứa tiếp tuyến chung của 2 đường tròn này cắt đường nối tâm của chúng theo một góc 30 độ. biết độ dài đoạn tiếp tuyến chung giữ 2 tiếp điểm là 108cm. tính độ dài bán kính cửa mỗi đường tròn. trình bày sơ lược lời giải
Giải giúp tớ với, cần câu trả lời gấp ạk, thanks
1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.
a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếp
b/ Chứng minh rằng góc ACB+ góc AEB= 45 độ
2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A là tiếp điểm và cát tuyến SCB không qua tâm sao cho O nằm trong góc ASB ( C nằm giữa S và B ). Gọi H là trung điểm của CB
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Tính chu vi và diện tích của đường tròn ngoại tiếp tứ giác SAOH
c) Tính tích SC.SB
3/ Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB=2R. Lấy H là trung điểm của dây BC. Tia OH cắt đường tròn tại D, AD lần lượt cắt tiếp tuyến Bx của đường tròn tại E và F
a) Chứng minh AD là tia phân giác của góc CAB
b) Chứng minh tứ giác ECDF là tứ giác nội tiếp
c) Cho CD= R=căn10cm. Tính diện tích của hình viên phân giới hạn bởi cung CDB với dây CB
4/ Cho tam giác ABC cân ở A nội tiếp đường tròn O đường kính I. Gọi E là trung điểm của AB. K là trung điểm của OI. Chứng minh rằng AEKC là tứ giác nội tiếp
5/Cho tam giác ABC. Các đường phân giác trong của B, C cắt nhau tại S, các đường phân giác ngoài của B và C cắt nhau tại E. Chứng minh rằng BSCE là 1 tứ giác nội tiếp.
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
cho đường tròn (O) đường kính AB, một điểm M di động trên đường tròn. Gọi N là điểm đối xứng với A qua M; P là giao điểm thứ 2 của BN với đường tròn (O); Q,R là giao điểm của đường thẳng BM lần lượt với AP và với tiếp tuyến tai A của đường tròn(O).
a) chứng minh N luôn luôn trên 1 đường tròn cố định tiếp xúc với đường tròn (O). Gọi đó là đường tròn (C)
b) chứng minh RN là tiếp tuyến của đường tròn (C)
c) tứ giác ARNQ là hình gì?
không cần vẽ hình nha mn
làm giúp mình với. ai có làm là mình tick đúng cho
làm ơn!!!
a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính
\(\Rightarrow\widehat{AMB}=90^0\)
\(\Rightarrow AM\perp MB\)
Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình
\(\Rightarrow\Delta ANB\)cân tại B
\(\Rightarrow NB=BA\)
\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định
b) Vì BM là đường cao của tam giác ABN cân tại B
=> BM là phân giác góc ABN
=> góc ABM= góc NBM
Xét tam giác ARB và tam giác NRB có:
\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)
\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)
\(\Rightarrow RN\perp BN\)
\(\Rightarrow RN\)là tiếp tuyến của (C)
c) Ta có: A,P,B thuộc (O); AB là đường kính
\(\Rightarrow\widehat{APB}=90^0\)
\(\Rightarrow AP\perp BP\)
\(\Rightarrow RN//AP\)( cùng vuông góc với NB )
Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q
\(\Rightarrow Q\)là trực tâm tam giác NAB
\(\Rightarrow NQ\perp AB\)
=> NQ // AR( cùng vuông góc với AB)
Xét tứ giác ARNQ có:
\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành
Mà 2 đường chéo RQ và AN vuông góc với nhau
=> ARNQ là hình thoi
Cho hai đường tròn (O;2cm)và (O;3cm);OO'=16cm
a)xác định vị trí tương đối của hai đường tròn (O)và (O')
b)vẽ đường tròn (O';1cm),kẻ tiếp tuyến OA với đường tròn đó (A là tiếp điểm).Tia O'A cắt đường tròn (O';3cm) tại B.Kẻ bán kính OC của đường tròn (O;2cm) song song với O'B.Điểm B,C thuộc một nửa mặt phẳng có bờ là OO'.chứng minh rằng BC là tiếp tuyến chung của hai đường tròn (O;2cm)và (O';3cm)
c)Tính độ dài BC
d)gọi I là giao điểm của BC và OO'.Tính IO