Đường tròn bàng tiếp trong góc A của tam giác ABC tiếp xúc với AC tại T. Gọi I là tâm dường tròn nội tiếp tam giác ABC. Cm Sabc = 2 Sait
giup minh nha mai minh hoc , cam on rat rat nhieu !
Đường tròn bàng tiếp trong góc A của tam giác ABC tiếp xúc với AC tại T. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh S ABC = 2 S AIT giup
cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn (O) (AB<AC). Dường tròn tâm O1 tiếp xúc trong với dường tròn (O) tại M, tiếp xúc với 2 cạnh AB, AC lần lượt tại L,K. Gọi E là giao điểm thứ hai của Mk với (O)
a/ c/m ME là tia phân giác góc AMC
b/tia phân giác Mx của góc BMC cắt LK tại I. CM rằng tứ giác MIKC nội tiếp
Cho tam giác ABC cân tại A, đ tròn (O) ngoại tiếp tam giác ABC, đường tròn tâm (O') tiếp xúc trong với (O) và tiếp xúc với cạnh AB ở P, AC ở Q. Cm trung điểm I của PQ là tâm đ tròn nội tiếp tam giác ABC
Các bác giúp em, em đang cần gấp cách giải.Cảm ơn mọi người!!!
Cho tam giác ABC. Một đường tròn tâm O nội tiếp tam giác ABC và tiếp xúc với BC tại D. Đường tròn tâm I là đường tròn bàng tiếp trong góc A của tam giác ABC và tiếp xúc với BC tại F. Vẽ đường kính DE của đường tròn (O). Chứng minh ràng A, E, F thẳng hàng.
Cho tam giác ABc , lấy D trên cạnh BC , vẽ đường tròn tâm I qua D tiếp xúc với AB tại B. Vẽ đường tròn tâm K qua D tiếp xúc với AC tại C . Gọi M là giao điểm của hai đường tròn đó
1. CM : tứ giác ABMC nội tiếp
2. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC . CM : 3 đường tròn tâm I, tâm K và tâm O đồng quy
3. CM : MD di chuyển qua 1 điểm cố định
Cho tam giác ABC (AB<AC) có 3 góc nhọn nội tiếp đường tròn O bán kính R. Ba đường cao AD,BE,CF cắt nhau tại H. Gọi I là tâm đường tròn nội tiếp tam giác ABC, J là tâm đường tròn bàng tiếp góc A. Chứng minh: AI.AJ=AB.AC
Cho tam giác ABC. Điểm I là tâm đường tròn bàng tiếp trong góc A của tam giác. Đường tròn này tiếp xúc với AB,AC,BC tại K,L,M. LM∩BJ≡F;KM∩CJ≡G. Gọi S,T lần lượt là giao điểm của AF,AG với BC. CMR: M là trung điểm ST
cho tam giác ABC , Đường tròn (I) nội tiếp tam giác tiếp xúc với cạnh BC tại D. Đường tròn (K) là đường tròn bàng tiếp trong góc A tiếp xúc với BC tại E. Gọi F là điểm đối xứng của D qua I. Chứng minh rằng
a) tam giác AIF đồng dạng với tam giác AKE
b) trung điểm của BC cũng là trung điểm của DE
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Cho tam giác ABC vuông tại A, đường tròn nội tiếp (I) tiếp xúc với AB,AC tại E,D. Các đường tròn bàng tiếp góc B,C tiếp xúc với AC,AB tại F,G . DE cắt FG tại P. PL,PM là 2 tiếp tuyến của (I). Cmr AM vuông góc với BC