CMR 2009 mũ 2009-1 chia hết cho 2008
CHỨNG MINH rằng 2009 mũ 2009 chia hết cho 2008
CMR: 20092009 - 1 chia hết cho 2008
CMR:2009^2009 chia hết cho 2008
cm : D = 11 mũ 2009 + 11 mũ 2008 +....+ 11 mũ 2000 chia hết cho 5
D = 112009 + 112008 + ... + 112000 ( Có 10 SH )
Thấy mỗi số hạng của D có dạng 11n ( n = 2000; 2001;..;2009 ) đều có chữ số tận cùng là 1
=> D có chữ số tận cùng là 0
=> D \(⋮\)5 ( đpcm )
\(D=11^{2009}+11^{2008}+11^{2007}+...+11^{2000}\)
Số số hạng là: (2009 - 2000) : 1 + 1 = 10 (số)
Mà ta thấy số nào tận cùng bằng 1 lũy thừa bao nhiêu cũng tận cùng bằng 1
\(\Rightarrow D=...1+...1+...1+...+...1\)
\(\Rightarrow D=...0\)
Mà số nào tận cùng bằng 0 thì chia hết cho 5
Vậy \(D⋮5\)(ĐPCM)
Chứng minh rằng 7 mũ 0 + 7 mũ 1 + 7 mũ 2 + 7 mũ 3 + ....... + 7 mũ 2008 + 7 mũ 2009 chia hết cho 8
70 + 71 + 72 + 73 + ... + 72008 + 72009
= (1 + 7) + (1 + 7) . 73 + ... + (1 + 7) . 72009
=8 + 8 . 73 + ... + 8 . 72009
= 8 . (1 + 73 + ... + 72009)
Vậy tổng trên chia hết cho 8
Ta có : ( 70 + 71 + 72 + 73 + ..... + 72008 + 72009 )
(=) ( 1 + 7 + 72 + 7 3 + ...... + 72008 + 72009 )
(=) 1 . ( 1 + 7 ) + 72 . ( 1 + 7 ) + ....... + 72008 . ( 1 + 7 )
(=) ( 1 + 7 ) . ( 1 + 72 + ..... + 72008 )
(=) 8 . ( 1 + 72 + ..... + 72008 ) chia hết cho 8 ( vì 8 chia hết cho 8 )
chứng minh rằng: 2008 mũ 100 + 2008 mũ 99 chia hết cho 2009
12345 mũ 678 - 1234 mũ 677 chia hết cho 12344
a)2008100 + 200899 = 200899.(1 + 2008)=200899.2009
Từ đó suy ra : 200899+2008100 chia hết co 2009
b)
12345678 - 12345677 = 12345677. ( 12345 - 1 ) = 12345677 . 12344
=> 12345678 - 12345677 chia hết cho 12344
k nha ><Thanks
Ta có: \(2008^{100}+2008^{99}=2008^{99}\left(2008+1\right)\)
\(=2008^{99}.2009\)
Vậy \(2008^{100}+2008^{99}⋮2009\)
Cho A=10 mũ 2011+ 10 mũ 2010 + 10 mũ 2009 + 10 mũ 2008+8
a. Cmr A chia hết cho 24
b. Cmr A ko phải là số chính phương
Giải chi tiết ra giúp mk nha giải ra bằng số ko giải bằng chữ
Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.
Dễ quá, thực hiện qui tắc bỏ dấu ngoặc được:
\(2009+2009^2+....+2009^{2009}-1-2009-...-2009^{2008}\)
\(=-1+\left(2009-2009\right)+\left(2009^2-2009^2\right)+...+\left(2009^{2008}-2009^{2008}\right)+2009^{2008}\)
\(=2009^{2008}-1\)
\(=\left(2009-1\right)\left(2009^{2007}+2009^{2008}+...+2009+1\right)\)
\(=2008\left(2009^{2007}+2009^{2008}+...+2009+1\right)\) chia hết cho 2008
=> ĐPCM
Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.
Đặt A=2009+20092+20093+20094+...+20092009, B=1+2009+20092+20093+20094+...+20092008
Ta có:
+)A=2009+20092+20093+20094+...+20092009
2009A= 20092+20093+20094+...+20092010
2009A-A=(20092+20093+20094+...+20092010)-(2009+20092+20093+20094+...+20092009)
2008A=20092010- 2009
=> A=(20092010- 2009)/2008
=> A chia hết cho 2008.
B=1+2009+20092+20093+20094+...+20092008
2009B=2009+20092+20093+20094+...+20092010
2009B-B=(2009+20092+20093+20094+...+20092010)-(1+2009+20092+20093+20094+...+20092009)
2008B=20092010-1
=>B=(20092010-1)/2008
=>B chia hết cho 2008
=> A-B chia hết cho 2008.
=> ĐPCM
CMR:
a) 14^14 -1 chia hết cho 3
b) 2009^2009-1 chia hết cho 2008
c) A= 2+ 2^2+...+2^60 chia hết cho 21 và 15
d) B= 5 + 5^2+...+5^12 chia hết cho 30 và 31
e) C= 1+3+3^2+...+3^11 chia hết cho 52