x^39+x^36+...+x^3+1
____________________
x^40+x^38+...+x^2+1
Rut gon phan so:
x^39+x^36+...+x^3+1
phan x^40+x^38+...+x^2+1
Rút gọn biểu thức\(B=\frac{x^{39} x^{36} x^{33} ... x^3 1}{x^{40} x^{38} x^{36} ... x^2 1}\)\(A=\frac{x^{95} x^{94} x^{93} ... x 1}{x^{31} x^{30} x^{29} ... x 1}\)
Rút gọn biểu thức\(B=\frac{x^{39} x^{36} x^{33} ... x^3 1}{x^{40} x^{38} x^{36} ... x^2 1}\)\(A=\frac{x^{95} x^{94} x^{93} ... x 1}{x^{31} x^{30} x^{29} ... x 1}\)
Rút gọn.
\(B=\dfrac{x^{39}x^{36}x^{33}...x^31}{x^{40}x^{38}x^{36}...x^21}=\dfrac{x^{\left(39+36+33+...+3\right)}}{x^{\left(40+38+36+...+2\right)}}\)
ta có: \(39+36+33+...+3=\dfrac{\left(39+3\right)\left(\dfrac{39-3}{3}+1\right)}{2}=273\)
\(40+38+36+....+2=\dfrac{\left(40+2\right)\left(\dfrac{40-2}{2}+1\right)}{2}=420\)
=> \(B=\dfrac{x^{273}}{x^{420}}=\dfrac{1}{x^{147}}\)
Tương tự như B => \(A=\dfrac{x^{4560}}{x^{496}}=x^{4064}\)
Ta có:
\(B=\dfrac{x^{\left(39+36+33+....+3\right)}}{x^{\left(40+38+36+....+2\right)}}\)
\(39+36+33+....+3=\dfrac{\left(39+3\right)\left(\dfrac{39-3}{3}+1\right)}{2}=273\)
\(40+38+36+....+2=\dfrac{\left(40+2\right)\left(\dfrac{40-2}{2}+1\right)}{2}=420\)
\(\Rightarrow B=\dfrac{x^{273}}{x^{420}}=\dfrac{1}{x^{147}}\)
tương tự => \(A=\dfrac{x^{4560}}{x^{496}}=x^{4064}\)
Rút gọn phân thức sau:
\(A=\frac{x^{39}+x^{36}+x^{33}+...+x^3+1}{x^{40}+x^{38}+x^{36}+...+x^2+1}\)
\(A=\frac{x^{39}+x^{36}+x^{33}+...+x^3+1}{x^{40}+x^{38}+x^{36}+...+x^2+1}\)
Đặt \(C=x^{39}+x^{36}+x^{33}+...+x^3+1\)
\(x^3.C=x^{42}+x^{39}+x^{36}+...+x^3\)
\(\left(x^3-1\right)C=x^{42-1}\)
\(C=\frac{x^{42}-1}{x^3-1}\)
Đặt \(D=x^{40}+x^{38}+x^{36}+....+x^2+1\)
\(x^2.D=x^{42}+x^{40}+x^{38}+x^{36}+....+x^2\)
\(\left(x^2-1\right).D=x^{42}-1\)
\(D=\frac{x^{42}-1}{x^2-1}\)
Ta có :
\(C:D=\frac{x^{42}-1}{x^3-1}:\frac{x^{42}-1}{x^2-1}\)
\(C:D=\frac{x^2-1}{x^3-1}\)
\(C:D=\frac{x+1}{x^2+x+1}\)
Ta có : \(A=C:D=\frac{x+1}{x^2+x+1}\)
Vậy ...........
Tính: S = 1 x 2 + 2 x 3 + 3 x 4 + ............ + 38 x 39 + 39 x 40
S = 1x2 + 2x3 + 3x4 + ... + 38x39 + 39x40
3S = 1x2x3 + 2x3x3 + 3x4x3 + ... + 38x39x3 + 39x40x3
3S = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + ... + 38x39x(40-37) + 39x40x(41-38)
3S = 1x2x3 + 2x3x4-1x2x3 + 3x4x5-2x3x4 + ... + 38x39x40-37x38x39 + 39x40x41-38x39x40
S = 39x40x41 : 3
S = 21320
x-1/39+x-2/38=x-3/37+x-4/36
Tính: S = 1 x 2 + 2 x 3 + 3 x 4 + 38 x 39 + 39 x 40
Ta có:
S = 1x2 + 2x3 + 3x4 + ...+ 38x39 + 39x40
S x 3 = 1x2x3 + 2x3x3 + 3x4x3 +… + 38x39x3 + 39x40x3
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + ... + 38x39x(40-37) + 39x40x(41-38)
S x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + ... + 38x39x40 - 37x38x39 + 39x40x41 - 38x39x40.
S x 3 = 39x40x41
S = 39x40x41:3= 21320
ta có: S=2+6+12+1482+1560
S=3062
chúc bạn học giỏi,nhớ k cho mình
Tính: S = 1 x 2 + 2 x 3 + 3 x 4 + 38 x 39 + 39 x 40
1 x 2 +2 x 3 x 4 + 38 x 39 +39 x 40=
2 + 2 x 4 + 38 x 39 + 39 x 40=
2 + 8 +38 x 39 +39 x40=
2 + 8 + 1482 + 39 x 40=
2 + 8+ 1482 + 1560=
10 +1482 +1560 =
1492 +1560 = 3052
Ta có:
S = 1x2 + 2x3 + 3x4 + ...+ 38x39 + 39x40
S x 3 = 1x2x3 + 2x3x3 + 3x4x3 +… + 38x39x3 + 39x40x3
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + ... + 38x39x(40-37) + 39x40x(41-38)
S x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + ... + 38x39x40 - 37x38x39 + 39x40x41 - 38x39x40.
S x 3 = 39x40x41
S = 39x40x41:3= 21320
A = 2 / 1 x 2 x 3 + 2 / 2 x 3 x 4 + 2 / 3 X 4 X 5 +.....+ 2 / 36 x 37 x 38 + 2 / 37 x 38 x 39
Tìm A
Cách 1:
A = \(\frac{2}{1.2.3}\)+ \(\frac{2}{2.3.4}\)+ \(\frac{2}{3.4.5}\)+ .... + \(\frac{2}{36.37.38}\)+ \(\frac{2}{37.38.39}\)
A = \(\frac{3-1}{1.2.3}\)+ \(\frac{4-2}{2.3.4}\)+ \(\frac{5-3}{3.4.5}\)+ ... + \(\frac{38-36}{36.37.38}\)+ \(\frac{39-37}{37.38.39}\)
A = ( \(\frac{3}{1.2.3}\)- \(\frac{1}{1.2.3}\) )+ ( \(\frac{4}{2.3.4}\)-\(\frac{2}{2.3.4}\)) + ... + (\(\frac{38}{36.37.38}\)- \(\frac{36}{36.37.38}\)) + (\(\frac{39}{37.38.39}\)- \(\frac{37}{37.38.39}\))
A = ( \(\frac{1}{1.2}\)- \(\frac{1}{2.3}\)) + (\(\frac{1}{2.3}\) -\(\frac{1}{3.4}\) ) + ... + ( \(\frac{1}{36.37}\)- \(\frac{1}{37.38}\)) + ( \(\frac{1}{37.38}\)- \(\frac{1}{38.39}\))
A = \(\frac{1}{1.2}\)+ (-\(\frac{1}{2.3}\)+ \(\frac{1}{2.3}\)) + (-\(\frac{1}{3.4}\)+ \(\frac{1}{3.4}\)) + ..... + ( -\(\frac{1}{37.38}\)+\(\frac{1}{37.38}\)) - \(\frac{1}{38.39}\)
A = \(\frac{1}{1.2}\)+ 0 + 0 + 0 +... + 0 - \(\frac{1}{38.39}\)
A = \(\frac{1}{1.2}\)- \(\frac{1}{38.39}\)= \(\frac{741}{1482}\)- \(\frac{1}{1482}\)= \(\frac{740}{1482}\)=\(\frac{370}{741}\)