Chứng minh rằng 2n+5 và 6n+13 là hai số nguyên tố cùng nhau
Chứng minh rằng hai số 2n+1 và 6n+5 là hai số nguyên tố cùng nhau
Gọi d là Ước chung lớn nhất của 2n + 1 và 6n + 5
=> ( 6n + 5 ) - ( 2n + 1 ) chia hết cho d
=> ( 6n + 5 ) - 3( 2n + 1 ) chia hết cho d
=> ( 6n + 5 ) - ( 6n + 3 ) chia hết cho d
=> 2 chia hết cho d
Vậy ước chung lớn nhất của 2n + 1 và 6n + 5 là 2 .
Gọi a là ƯCLN(2n+1, 6n+5)
ta có: 2n+1 chia hết cho a và 6n+5 chia hết cho a
3.(2n+1) chia hết cho a và (6n + 5) chia hết cho a
6n+3 chia hết cho a và 6n+5 chia hết cho a
[(6n+5) - (6n+3)] chia hết cho a
[6n+5 - 6n -3] chia hết cho a
2 chia hết cho a suy ra a = 2 hoặc 1
Vậy 6n+5 và 2n+1 là hai số nguyên tố chung
Gọi d là Ước chung lớn nhất của 2n + 1 và 6n + 5 (dϵN')
=> ( 6n + 5 ) - ( 2n + 1 ) chia hết cho d
=> ( 6n + 5 ) - 3( 2n + 1 ) chia hết cho d
=> ( 6n + 5 ) - ( 6n + 3 ) chia hết cho d
2 chia hết cho a suy ra a = 2 hoặc 1
Vậy 6n+5 và 2n+1 là hai số nguyên tố chung
Chứng minh 2n+5 và 6n+17 là hai số nguyên tố cùng nhau
Chứng minh 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Chứng minh n+3 và 3n+10 là hai số nguyên tố cùng nhau
Chứng minh rằng hai số 2n + 1 và 6n + 5 là hai số nguyên tố cùng nhau với mọi n thuộc N .
Gọi (2n + 1,6n + 5) = d (d \(\in\)N)
=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
=> 3 . (2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 5 - (6n + 3) chia hết cho d
hay 2 chia hết cho d => d \(\in\)Ư(2) => d \(\in\){-2;-1;1;2}
Mà d là lớn nhất nên d = 2
Ta thấy 6n + 5 ko chia hết cho 2 và 2n + 1 ko chia hết cho 2
=> (2n + 1,6n + 5) = 1
Vậy 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc N
Ủng hộ mk nha !!! ^_^
Gọi d là Ưcln của 2n + 1 và 6n + 5
Khi đó : 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
<=> 3.(2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> (6n + 5) - (6n + 3) chia hết cho d => 2 chia hết cho d
Mà ưc của 2 là 1 => d = 1
VậY (đpcm_)
Giả sử UCLN của 2n + 1 và 6n + 5 là : H
Ta có : 2n + 1 chia hết cho H và 6n + 5 chia hết cho H
=> 3( 2n + 1 ) chia hết cho H và 6n + 5 => chia hết cho H
=> 6n + 3 chia hết cho H và 6n + 5 => chia hết cho H
Vậy nên ( 6n + 5 ) - ( 6n + 3 ) chia hết cho H => H chia hết cho 2
Ư ( 2 ) là 1 => H = 1
Vậy .............
Chứng minh rằng:
a) 2n+1và 6n+5 là hai số nguyên tố cùng nhau
b) 2n+1và 2n+3 là hai số nguyên tố cùng nhau
Gọi d là ƯCLN của 2n + 1 và 2 n + 3
Ta có : 2n + 1 chia hết cho d
2n + 3 chia hết cho d
=> ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d
2 chia hết cho d => d là Ư của 2
Mà Ư(2) = { 1 ; 2 }
Mà d lẻ => d = 1
Vậy 2 n + 1 và 2n + 3 nguyên tố cùng nhau
a) gọi d là UC(2n+1;6n+5)
2n+1 chia hết cho d nên 3(2n+1)=6n+3 cũng chia hết cho d
(6n+5)-(6n+3) chia hết cho d
vậy 2 chia hết cho d mà d thuộc U(2)={1;2}
2n+1 và 6n+5 đều là số lẻ nên d =1
vậy 2 số trên là 2 số nguyên tố cúng nhau
b) tương tự như câu a
tích mình nhé Hoa!!!!!!!!!!!!
Chứng minh rằng 2n + 1 và 6n + 5 là hai số nguyên tố cùng nhau với mọi số tự nhiên n.
Giả sử 2n+1 và 6n+5 ko phải là 2 số nguyên tố cùng nhau thì:
cho d là ƯCLN của chúng và d>1
ta có:2n+1chia hết cho d,vậy 6n+3 cũng chia hết cho d
suy ra:6n+5-(6n+3) chia hết cho d
vậy 2 chia hết cho d
mà các ƯC của 2 là :2 và 1
mà cả 2 số đã cho đều là số lẻ,nên d phải bằng 1
nhưng như vậy thì trái với giả thuyết mà chúng ta đặt ra ban đầu
vậy 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau
Chứng minh rằng: 2n + 2 và 6n + 5 là hai số nguyên tố cùng nhau với mọi n thuộc N
tham khảo câu hỏi tương tự nha bạn
2n + 2 = 4n
6n + 5 = 11n
=> ƯCLN(4n, 11n) = 1
<=> ƯCLN(2n + 2, 6n + 5) = 1
Vì 2, 5 là số nguyên tố mà chỉ duy nhất 6 là hợp số nên 6 + 5 = 11 là số nguyên tố
=> ƯCLN(2n + 2, 6n + 5) = 1
=> ĐPCM
Chứng minh rằng : 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN (2n+1;6n+5)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\6n+5⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}6n+3⋮d\\6n+5⋮d\end{cases}}}\)
=> (6n+5)-(6n+3) chia hết cho d
=> 2 chia hết cho d
=> d={1;2}
Vì 2n+1 là số lẻ => 2n+1 không chia hết cho 2
=> d=1
Gọi ƯCLN(2n+1;6n+5) là d
Có \(2n+1⋮d\)
\(6n+5⋮d\)
=> \(3\left(2n+1\right)⋮d\)
\(6n+5⋮d\)
=>\(6n+3⋮d\)
\(6n+5⋮d\)
=>\(\left(6n+5\right)-\left(6n+3\right)\)\(⋮\)d
=>2 chia hết cho d
=> d thuộc Ư(2)={1;2}
Vì 2n+1 lẻ nên d khác 2
=> d bằng 1
Vậy....
Chứng minh rằng hai số 2n 1 và 6n 5 nguyên tố cùng nhau với mọi số tự nhiên n
Chứng minh rằng hai số 2n+1 và 6n+5 nguyên tố cùng nhau với mọi số tự nhiên n
Gọi \(d\inƯCLN\left(2n+1;6n+5\right)\) nên ta có :
\(2n+1⋮d\) và \(6n+5⋮d\)
\(\Leftrightarrow3\left(2n+1\right)⋮d\) và \(6n+5⋮d\)
\(\Leftrightarrow6n+3⋮d\) và \(6n+5⋮d\)
\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow d=2\)
Mà \(2n+1;6n+5\) là các số lẻ nên không thể có ước là 2
\(\Rightarrow d=1\)
\(\Rightarrow2n+1\) và \(6n+5\) là nguyên tố cùng nhau