Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Lệ Hằng
Xem chi tiết
TFboys_Lê Phương Thảo
Xem chi tiết
sakura haruko
Xem chi tiết
sakura haruko
Xem chi tiết
Ngo Phuc Duong
13 tháng 9 2015 lúc 7:08

bó tay dù sao mk cũng muốn bạn tick cho mk nha

w1daniel
Xem chi tiết
Nguyễn Linh Chi
6 tháng 5 2020 lúc 16:29

Khi f( x) : ( x - 2 ) ( x - 3) thì còn đa thức dư vì ( x - 2 ) ( x - 3 ) có bậc cao nhất là 2 

=> đa thức dư có bậc cao nhất là 1 

=> G/s: đa thức dư là: r(x) = a x + b 

Ta có: f ( x ) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + ax + b 

Vì f ( x ) chia ( x - 2 ) dư 2016 

=> f ( 2 ) = 2016   => a.2 + b = 2016 (1) 

Vì f(x ) chia ( x - 3 ) dư 2017 

=> f ( 3) = 2017 => a.3 + b  = 2017 (2) 

Từ (1) ; (2) => a = 1; b = 2014 

=> Đa thức f(x) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + x + 2014

và đa thức dư là: x + 2014

Khách vãng lai đã xóa
Lê Anh
Xem chi tiết
Nguyen Van Viet Cuong
Xem chi tiết
Pham Van Hung
7 tháng 12 2018 lúc 13:02

\(f\left(x\right)=\left(x-2\right)\left(x-3\right)Q\left(x\right)+ax+b\) (Q(x) là thương, ax + b là số dư)

f (x) chia cho x - 2 dư 3 tức f(2) = 3 \(\Rightarrow2a+b=3\) (1)

f(x) chia x - 3 dư 4 tức f(3) = 4 \(\Rightarrow3a+b=4\) (2)

Từ (1) và (2), ta được \(3a+b-\left(2a+b\right)=4-3=1\Rightarrow a=1\Rightarrow b=1\)

Vậy đa thức dư là ax + b = x + 1

Nguyen Van Viet Cuong
7 tháng 12 2018 lúc 19:07

cảm ơn bạn nhiều lắm 

Huy Vũ Danh
Xem chi tiết
Trần Thị Thu Hường
Xem chi tiết
Hoàng Tuấn Huy
28 tháng 10 2020 lúc 21:32

600000000<1

Khách vãng lai đã xóa
Trần Thị Thu Hường
28 tháng 10 2020 lúc 21:45

Cho mình xin cách làm đi

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
28 tháng 10 2020 lúc 21:50

Nó là định lí Bézout đấy bạn ^^

Định lí Bézout : Phần dư trong phép chia đa thức f(x) cho nhị thức g(x) = x - a là một hằng số bằng f(a)

Chứng minh : Theo định lí cơ bản ta có : f(x) = ( x - a ).P(x) + R(x) (1)

Ở đây, g(x) = x - a có bậc là bậc nhất mà bậc của dư R(x) phải nhỏ hơn bậc của g(x), vậy R(x) phải là một hằng số, thay x = a trong đẳng thức (1) ta có : f(a) = ( a - a ).P(a) + R => R = f(a)

Hệ quả : Nếu a là nghiệm của f(x) thì f(x) chia hết cho x - a

Ta dùng hệ quả của định lí Bézout để phân tích đa thức thành nhân tử khi đã biết một nghiệm

Khách vãng lai đã xóa