Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Linh
Xem chi tiết
Mika Yuuichiru
Xem chi tiết
Lê Hoàng
15 tháng 3 2020 lúc 13:00

\(A=n^3-6n^2+9n-2=n\left(n^2-6n+9\right)-2=n\left(n-3\right)^2-2\)

Vì một trong các thừa số \(n\) và \(\left(n-3\right)^2\) là số chẵn cho nên \(n\left(n-3\right)^2⋮2\forall n\in N\)

\(\Rightarrow n\left(n-3\right)^2-2⋮2\forall n\in N\) (số chẵn trừ đi số chẵn bằng số chẵn)

\(\Rightarrow A⋮2\forall n\in N\)

Mà 2 là số nguyên tố duy nhất mà chia hết cho 2

\(\Rightarrow n^3-6n^2+9n-2=2\)

\(\Leftrightarrow n^3-6n^2+9n-4=0\)

Giải phương trình trên ta được \(n\in\left\{1;4\right\}\) (đều thoả mãn điều kiện \(n\in N\))

Vậy với \(n\in\left\{1;4\right\}\)thì \(A=n^3-6n^2+9n-2\) là số nguyên tố.

Khách vãng lai đã xóa
Huỳnh Lê Thanh Tùng
Xem chi tiết
Đoàn Thu Thuỷ
Xem chi tiết
HiepNghia NguyenDuc
Xem chi tiết
Phạm Kim Cương
13 tháng 3 2017 lúc 13:11

số nguyên dương n là 2

I am➻Minh
Xem chi tiết
No Name
Xem chi tiết
Nguyễn Trọng Quang
20 tháng 10 2019 lúc 21:03

CHÚ Ý!!! : Vì \(n\inℕ\)nên\(n^2+9n+20\)phải lớn hơn 20, suy ra nếu có thể, số nguyên tố này phải là số lẻ

Nếu \(n⋮2\)thì: \(\hept{\begin{cases}n^2⋮2\\9n⋮2\\20⋮2\end{cases}}\Rightarrow\left(n^2+9n+20\right)⋮2\)=> Ko thể là số nguyên tố.

Nếu n là số lẻ(Cách viết khác khi n là số lẻ)thì: n^2 là số lẻ, 9n cũng là số lẻ, 20 là số chẵn ==> \(\left(n^2+9n+20\right)⋮2\)==>Ko thể là số nguyên tố.

Vậy ko có trường hợp n nào thỏa mãn (n^2 + 9n + 20) là số nguyên tố ạ

Khách vãng lai đã xóa
thuy
Xem chi tiết
Kim Ngưu
Xem chi tiết
Nguyễn Anh Quân
1 tháng 12 2017 lúc 20:52

B = (n^4-3n^3)+(2n^3-6n^2)+(7n-21) = (n-3).(n^3+2n^2+7)

Để B là số nguyên tố => n-3 = 1 hoặc n^3+2n^2+7 = 1

=> n=4 hoặc n^3+2n^2+6=0

=> n=4 ( vì n^3+2n^2+6 > 0 )

Khi đó : B = 4^4-4^3-6.4^2+7.4-21 = 103 là số nguyên tố (tm)

Vậy n = 4

k mk nha